*** Wartungsfenster jeden ersten Mittwoch vormittag im Monat ***

Skip to content
Snippets Groups Projects
D1_09_Slurm_and_python.ipynb 13.6 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "8230ab11-bec2-45e6-ba89-e34b06e7e621",
   "metadata": {},
   "source": [
    "# Slurm and python environments"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "39c4e360-20bf-4c08-b918-d11a0f0a70e9",
   "metadata": {},
   "source": [
    "To run python from Slurm batch scripts we have to take into account what we already learned about VSC and the options we have for python environments (Module, venv & conda).\n",
    "\n",
    "<div class=\"alert alert-info rounded-pill rounded-5\" style=\"margin: auto auto 10px auto; width:60rem; text-align: center;\">\n",
    "    <strong>No matter what approach we take: always check your assumptions and make sure that you are using the right packages and versions.</strong>\n",
    "</div>\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e6399443-294a-4d49-882a-3ae9b6b89a7d",
   "metadata": {},
   "source": [
    "# Usage with `module`\n",
    "\n",
    "When we had a look at the module system earlier we selected python 3.9, numpy and mpi4py packages.\n",
    "\n",
    "Lets take this example and run a small test script via slurm that uses these packages."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3fa7025c-9149-4ac5-a1e0-05e408f5d94f",
   "metadata": {},
   "outputs": [],
   "source": [
    "!module avail py-numpy/*p3dg2gd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dff9ef94-fdfa-4821-ac53-c802d30bb023",
   "metadata": {},
   "outputs": [],
   "source": [
    "!module avail py-mpi4py/*xvabib2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1f9a58cd-3869-4ae9-98bf-fe980537fc08",
   "metadata": {},
   "outputs": [],
   "source": [
    "%%writefile temp/slurm/job-python-module.sh\n",
    "#!/bin/bash\n",
    "\n",
    "#SBATCH --job-name=python-module\n",
    "#SBATCH --output=temp/slurm/slurm-python-module-%j.out\n",
    "\n",
    "#SBATCH --account=p70824                          # set the account to use (for billing)\n",
    "#SBATCH --qos=zen3_0512                           # qos\n",
    "#SBATCH --reservation=jh_training_python4hpc_1    # during training we have a fixed reservation\n",
    "\n",
    "#SBATCH --partition=zen3_0512       # hardware to use\n",
    "#SBATCH --time=00:05:00             # maximum time of 5 min for testing\n",
    "\n",
    "#SBATCH --ntasks=4                  # use 4 cpus\n",
    "#SBATCH --mem=2G                    # and 2G of memory\n",
    "\n",
    "# abort on bash errors\n",
    "set -e\n",
    "\n",
    "# load the python modules we need\n",
    "# take care of the order of loading if we load multiple modules\n",
    "module purge\n",
    "module load --auto py-mpi4py/3.1.3-gcc-12.2.0-xvabib2\n",
    "module load --auto py-numpy/1.24.3-gcc-12.2.0-p3dg2gd\n",
    "module list\n",
    "\n",
    "# print out which python executable is active and its version\n",
    "echo -e \"\\n>> Using: $( python3 -V ) from $( which python3 )\"\n",
    "\n",
    "# run a program in the allocation\n",
    "export PYTHONPATH=./tooling/:$PYTHONPATH\n",
    "python3 examples/mpi_numpy_test.py"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "45c2ae73-4458-4da5-adda-8358cad0952d",
   "metadata": {},
   "outputs": [],
   "source": [
    "!source tooling/unload_jupyter_env.sh && sbatch temp/slurm/job-python-module.sh"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "84bf7972-cd36-46f4-ae36-d79c4293680c",
   "metadata": {},
   "outputs": [],
   "source": [
    "!squeue --me"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "489419b4-98d2-4a4b-beb8-fe8fbac1ab04",
   "metadata": {},
   "source": [
    "Please note that when we are using module to load python packages the `pip` binary is not automatically available.\n",
    "\n",
    "Spack's 'python' package only provides the basic python interpreter and its library."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2e38cde7-85bb-4567-8067-eb3c7b2735dc",
   "metadata": {},
   "source": [
    "# Using simple python venvs"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "32a826c5-e41d-40c4-9d47-fd7d4ec29925",
   "metadata": {},
   "source": [
    "Instead of loading all python packages via `module` we just have to load the libraries we used for building and activate the virtual environment. Then we simply execute the python code.\n",
    "\n",
    "Different to the usage with the module system `pip` comes installed as a default here."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fcaa8b13-589a-4e73-a866-552539f2a20b",
   "metadata": {},
   "outputs": [],
   "source": [
    "%%writefile temp/slurm/job-python-venv.sh\n",
    "#!/bin/bash\n",
    "\n",
    "#SBATCH --job-name=python-venv\n",
    "#SBATCH --output=temp/slurm/slurm-python-venv-%j.out\n",
    "\n",
    "#SBATCH --account=p70824                          # set the account to use (for billing)\n",
    "#SBATCH --qos=zen3_0512                           # qos\n",
    "#SBATCH --reservation=jh_training_python4hpc_1    # during training we have a fixed reservation\n",
    "\n",
    "#SBATCH --partition=zen3_0512       # hardware to use\n",
    "#SBATCH --time=00:05:00             # maximum time of 5 min for testing\n",
    "\n",
    "#SBATCH --ntasks=4                  # use 4 cpus\n",
    "#SBATCH --mem=2G                    # and 2G of memory\n",
    "\n",
    "# load the dependencies\n",
    "module load --auto gcc/13.2.0-gcc-12.2.0-wmf5yxk\n",
    "module load --auto intel-oneapi-mkl/2024.0.0-gcc-12.2.0-tk3clqd\n",
    "module load openmpi/4.1.6-gcc-12.2.0-exh7lqk\n",
    "\n",
    "# source the venv we want to use\n",
    "source temp/env/venv_mkl/bin/activate\n",
    "\n",
    "# run some commands for introspection\n",
    "echo \">> Pip: $( which pip )\"\n",
    "echo \">> Installed packages\"\n",
    "pip list --verbose\n",
    "echo \">> Python: $( python3 --version ) from $( which python3 )\"\n",
    "echo \">> Check expected numpy lapack linkage\"\n",
    "ldd temp/env/venv_mkl/lib/python3.11/site-packages/numpy/linalg/lapack_lite.cpython-311-x86_64-linux-gnu.so | grep \"intel\"\n",
    "\n",
    "# run a program in the allocation\n",
    "export PYTHONPATH=tooling/:$PYTHONPATH\n",
    "python3 examples/mpi_numpy_test.py"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cfac5499-1376-4a16-aef0-e3192447a9e8",
   "metadata": {},
   "outputs": [],
   "source": [
    "!source tooling/unload_jupyter_env.sh && sbatch temp/slurm/job-python-venv.sh"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c581871e-cd30-4dcc-8a7d-eeeb208e4c9e",
   "metadata": {},
   "outputs": [],
   "source": [
    "!squeue --me"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fffbed25-bd3a-40b3-9bfe-513be0ed7cc7",
   "metadata": {},
   "source": [
    "# Slurm and conda environments"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "add3725d-1da1-4572-b052-38d9c0dbb1d9",
   "metadata": {},
   "source": [
    "Similar to using a venv we also just have to load the conda environment and related modules we used for building.\n",
    "\n",
    "The situation gets trickier if we want to use external packages like OpenMPI. This will also be covered in more detail when we look into `mpi4py`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "21635901-bb2e-4ccc-8236-c8d5d1a21f09",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "%%writefile temp/slurm/job-python-conda.sh\n",
    "#!/bin/bash\n",
    "\n",
    "#SBATCH --job-name=python-conda\n",
    "#SBATCH --output=temp/slurm/slurm-python-conda-%j.out\n",
    "\n",
    "#SBATCH --account=p70824                          # set the account to use (for billing)\n",
    "#SBATCH --qos=zen3_0512                           # qos\n",
    "##SBATCH --reservation=jh_training_python4hpc_1    # during training we have a fixed reservation\n",
    "\n",
    "#SBATCH --partition=zen3_0512       # hardware to use\n",
    "#SBATCH --time=00:05:00             # maximum time of 5 min for testing\n",
    "\n",
    "#SBATCH --ntasks=4                  # use 4 cpus\n",
    "#SBATCH --mem=2G                    # and 2G of memory\n",
    "\n",
    "# load miniconda package and source shell functions\n",
    "module load miniconda3/latest\n",
    "eval \"$(conda shell.bash hook)\"\n",
    "# activate the environment to use (either by name or path)\n",
    "# here we use the previously generated conda-vsc-openmpi environment\n",
    "conda activate temp/env/conda-vsc-openmpi-env\n",
    "\n",
    "# load a VSC openmpi module and export the library path so applications can find the shared objects\n",
    "module load openmpi/4.1.6-gcc-12.2.0-exh7lqk\n",
    "# depending on the package configuration the LD_LIBRARY_PATH is not set to the lib folder\n",
    "# so we need to set it explicitly from LIBRARY_PATH thats usually used for compling code\n",
    "export LD_LIBRARY_PATH=\"$LIBRARY_PATH:$LD_LIBRARY_PATH\"\n",
    "\n",
    "# run some commands for introspection\n",
    "echo \">> Pip: $( which pip )\"\n",
    "echo \">> Installed packages\"\n",
    "pip list --verbose\n",
    "echo \">> Python: $( python3 --version ) from $( which python3 )\"\n",
    "\n",
    "# run a program in the allocation\n",
    "export PYTHONPATH=tooling/:$PYTHONPATH\n",
    "python3 examples/mpi_numpy_test.py"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "101cd61a-3cbc-4ee5-b733-6a3e0793a0bc",
   "metadata": {},
   "outputs": [],
   "source": [
    "!source tooling/unload_jupyter_env.sh && sbatch temp/slurm/job-python-conda.sh"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "31258c31-756f-4dcd-9863-440be8165211",
   "metadata": {},
   "outputs": [],
   "source": [
    "!squeue --me"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4d89d6f1-b016-4d52-83b9-c6e92ff1011e",
   "metadata": {},
   "source": [
    "# Slurm and Apptainer"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cf5504f7-e9c7-4f39-8692-6c5b814c07c5",
   "metadata": {},
   "source": [
    "Running Apptainer images from a Slurm batch script is pretty similar to using other environment options but we have a couple of more options regarding e.g. bindmounts & passthrough of hardware etc.\n",
    "\n",
    "In a nutshell we simply have to load an apptainer module and then execute the application or script.\n",
    "\n",
    "The application we execute does not necessarily need to be contained in the apptainer image since apptainer automatically mounts the users home directory. We simply use the container as executing environment.\n",
    "\n",
    "If we need other external directories these can also be mounted to be accessible from within the container."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9176ad5d-75a7-48d4-bd29-241899d4150d",
   "metadata": {},
   "outputs": [],
   "source": [
    "%%writefile temp/slurm/job-python-apptainer.sh\n",
    "#!/bin/bash\n",
    "\n",
    "#SBATCH --job-name=python-apptainer\n",
    "#SBATCH --output=temp/slurm/slurm-python-apptainer-%j.out\n",
    "\n",
    "#SBATCH --account=p70824                          # set the account to use (for billing)\n",
    "#SBATCH --qos=zen3_0512                           # qos\n",
    "#SBATCH --reservation=jh_training_python4hpc_1    # during training we have a fixed reservation\n",
    "\n",
    "#SBATCH --partition=zen3_0512       # hardware to use\n",
    "#SBATCH --time=00:05:00             # maximum time of 5 min for testing\n",
    "\n",
    "#SBATCH --ntasks=4                  # use 4 cpus\n",
    "#SBATCH --mem=2G                    # and 2G of memory\n",
    "\n",
    "# abort on bash errors\n",
    "set -e\n",
    "\n",
    "# load apptainer\n",
    "module purge\n",
    "module load --auto apptainer/1.1.6-gcc-12.2.0-xxfuqni\n",
    "\n",
    "# in order to make openmpi work with the container we have to load the module\n",
    "module load openmpi/4.1.6-gcc-12.2.0-exh7lqk\n",
    "# add the LIBRARY_PATH that was set by the modules to the LD_LIBRARY_PATH in the container\n",
    "export APPTAINERENV_LD_LIBRARY_PATH=\"$LIBRARY_PATH\"\n",
    "# and bind the software package tree as well as the system's gpfs library (!hacky!)\n",
    "export APPTAINER_BIND=\"/gpfs/opt/sw/:/gpfs/opt/sw/,/lib64/libgpfs.so:/lib/libgpfs.so\"\n",
    "\n",
    "# run a program using the resource allocation via apptainer image\n",
    "# the 'example' path does not need to be present in the image since apptainer\n",
    "# automatically mounts the home directory of the executing user\n",
    "export PYTHONPATH=tooling/:$PYTHONPATH\n",
    "apptainer exec temp/env/apptainer-mpi.sif python3 ./examples/mpi_numpy_test.py"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "61116363-d966-416d-be8d-228e548d71f2",
   "metadata": {},
   "outputs": [],
   "source": [
    "!source tooling/unload_jupyter_env.sh && sbatch temp/slurm/job-python-apptainer.sh"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "03b4376b-1301-4c01-80f1-cf0f549e2a22",
   "metadata": {},
   "outputs": [],
   "source": [
    "!squeue --me"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9fede467-289a-4035-b296-0a081b34b2d1",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}