Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
{
"cells": [
{
"cell_type": "markdown",
"id": "8230ab11-bec2-45e6-ba89-e34b06e7e621",
"metadata": {},
"source": [
"# Slurm and python environments"
]
},
{
"cell_type": "markdown",
"id": "39c4e360-20bf-4c08-b918-d11a0f0a70e9",
"metadata": {},
"source": [
"To run python from Slurm batch scripts we have to take into account what we already learned about VSC and the options we have for python environments (Module, venv & conda).\n",
"\n",
"<div class=\"alert alert-info rounded-pill rounded-5\" style=\"margin: auto auto 10px auto; width:60rem; text-align: center;\">\n",
" <strong>No matter what approach we take: always check your assumptions and make sure that you are using the right packages and versions.</strong>\n",
"</div>\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "e6399443-294a-4d49-882a-3ae9b6b89a7d",
"metadata": {},
"source": [
"# Usage with `module`\n",
"\n",
"When we had a look at the module system earlier we selected python 3.9, numpy and mpi4py packages.\n",
"\n",
"Lets take this example and run a small test script via slurm that uses these packages."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3fa7025c-9149-4ac5-a1e0-05e408f5d94f",
"metadata": {},
"outputs": [],
"source": [
"!module avail py-numpy/*p3dg2gd"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dff9ef94-fdfa-4821-ac53-c802d30bb023",
"metadata": {},
"outputs": [],
"source": [
"!module avail py-mpi4py/*xvabib2"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1f9a58cd-3869-4ae9-98bf-fe980537fc08",
"metadata": {},
"outputs": [],
"source": [
"%%writefile temp/slurm/job-python-module.sh\n",
"#!/bin/bash\n",
"\n",
"#SBATCH --job-name=python-module\n",
"#SBATCH --output=temp/slurm/slurm-python-module-%j.out\n",
"\n",
"#SBATCH --account=p70824 # set the account to use (for billing)\n",
"#SBATCH --qos=zen3_0512 # qos\n",
"#SBATCH --reservation=jh_training_python4hpc_1 # during training we have a fixed reservation\n",
"\n",
"#SBATCH --partition=zen3_0512 # hardware to use\n",
"#SBATCH --time=00:05:00 # maximum time of 5 min for testing\n",
"\n",
"#SBATCH --ntasks=4 # use 4 cpus\n",
"#SBATCH --mem=2G # and 2G of memory\n",
"\n",
"# abort on bash errors\n",
"set -e\n",
"\n",
"# load the python modules we need\n",
"# take care of the order of loading if we load multiple modules\n",
"module purge\n",
"module load --auto py-mpi4py/3.1.3-gcc-12.2.0-xvabib2\n",
"module load --auto py-numpy/1.24.3-gcc-12.2.0-p3dg2gd\n",
"module list\n",
"\n",
"# print out which python executable is active and its version\n",
"echo -e \"\\n>> Using: $( python3 -V ) from $( which python3 )\"\n",
"\n",
"# run a program in the allocation\n",
"export PYTHONPATH=./tooling/:$PYTHONPATH\n",
"python3 examples/mpi_numpy_test.py"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "45c2ae73-4458-4da5-adda-8358cad0952d",
"metadata": {},
"outputs": [],
"source": [
"!source tooling/unload_jupyter_env.sh && sbatch temp/slurm/job-python-module.sh"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "84bf7972-cd36-46f4-ae36-d79c4293680c",
"metadata": {},
"outputs": [],
"source": [
"!squeue --me"
]
},
{
"cell_type": "markdown",
"id": "489419b4-98d2-4a4b-beb8-fe8fbac1ab04",
"metadata": {},
"source": [
"Please note that when we are using module to load python packages the `pip` binary is not automatically available.\n",
"\n",
"Spack's 'python' package only provides the basic python interpreter and its library."
]
},
{
"cell_type": "markdown",
"id": "2e38cde7-85bb-4567-8067-eb3c7b2735dc",
"metadata": {},
"source": [
"# Using simple python venvs"
]
},
{
"cell_type": "markdown",
"id": "32a826c5-e41d-40c4-9d47-fd7d4ec29925",
"metadata": {},
"source": [
"Instead of loading all python packages via `module` we just have to load the libraries we used for building and activate the virtual environment. Then we simply execute the python code.\n",
"\n",
"Different to the usage with the module system `pip` comes installed as a default here."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fcaa8b13-589a-4e73-a866-552539f2a20b",
"metadata": {},
"outputs": [],
"source": [
"%%writefile temp/slurm/job-python-venv.sh\n",
"#!/bin/bash\n",
"\n",
"#SBATCH --job-name=python-venv\n",
"#SBATCH --output=temp/slurm/slurm-python-venv-%j.out\n",
"\n",
"#SBATCH --account=p70824 # set the account to use (for billing)\n",
"#SBATCH --qos=zen3_0512 # qos\n",
"#SBATCH --reservation=jh_training_python4hpc_1 # during training we have a fixed reservation\n",
"\n",
"#SBATCH --partition=zen3_0512 # hardware to use\n",
"#SBATCH --time=00:05:00 # maximum time of 5 min for testing\n",
"\n",
"#SBATCH --ntasks=4 # use 4 cpus\n",
"#SBATCH --mem=2G # and 2G of memory\n",
"\n",
"# load the dependencies\n",
"module load --auto gcc/13.2.0-gcc-12.2.0-wmf5yxk\n",
"module load --auto intel-oneapi-mkl/2024.0.0-gcc-12.2.0-tk3clqd\n",
"module load openmpi/4.1.6-gcc-12.2.0-exh7lqk\n",
"\n",
"# source the venv we want to use\n",
"source temp/env/venv_mkl/bin/activate\n",
"\n",
"# run some commands for introspection\n",
"echo \">> Pip: $( which pip )\"\n",
"echo \">> Installed packages\"\n",
"pip list --verbose\n",
"echo \">> Python: $( python3 --version ) from $( which python3 )\"\n",
"echo \">> Check expected numpy lapack linkage\"\n",
"ldd temp/env/venv_mkl/lib/python3.11/site-packages/numpy/linalg/lapack_lite.cpython-311-x86_64-linux-gnu.so | grep \"intel\"\n",
"\n",
"# run a program in the allocation\n",
"export PYTHONPATH=tooling/:$PYTHONPATH\n",
"python3 examples/mpi_numpy_test.py"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cfac5499-1376-4a16-aef0-e3192447a9e8",
"metadata": {},
"outputs": [],
"source": [
"!source tooling/unload_jupyter_env.sh && sbatch temp/slurm/job-python-venv.sh"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c581871e-cd30-4dcc-8a7d-eeeb208e4c9e",
"metadata": {},
"outputs": [],
"source": [
"!squeue --me"
]
},
{
"cell_type": "markdown",
"id": "fffbed25-bd3a-40b3-9bfe-513be0ed7cc7",
"metadata": {},
"source": [
"# Slurm and conda environments"
]
},
{
"cell_type": "markdown",
"id": "add3725d-1da1-4572-b052-38d9c0dbb1d9",
"metadata": {},
"source": [
"Similar to using a venv we also just have to load the conda environment and related modules we used for building.\n",
"\n",
"The situation gets trickier if we want to use external packages like OpenMPI. This will also be covered in more detail when we look into `mpi4py`."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "21635901-bb2e-4ccc-8236-c8d5d1a21f09",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"%%writefile temp/slurm/job-python-conda.sh\n",
"#!/bin/bash\n",
"\n",
"#SBATCH --job-name=python-conda\n",
"#SBATCH --output=temp/slurm/slurm-python-conda-%j.out\n",
"\n",
"#SBATCH --account=p70824 # set the account to use (for billing)\n",
"#SBATCH --qos=zen3_0512 # qos\n",
"##SBATCH --reservation=jh_training_python4hpc_1 # during training we have a fixed reservation\n",
"\n",
"#SBATCH --partition=zen3_0512 # hardware to use\n",
"#SBATCH --time=00:05:00 # maximum time of 5 min for testing\n",
"\n",
"#SBATCH --ntasks=4 # use 4 cpus\n",
"#SBATCH --mem=2G # and 2G of memory\n",
"\n",
"# load miniconda package and source shell functions\n",
"module load miniconda3/latest\n",
"eval \"$(conda shell.bash hook)\"\n",
"# activate the environment to use (either by name or path)\n",
"# here we use the previously generated conda-vsc-openmpi environment\n",
"conda activate temp/env/conda-vsc-openmpi-env\n",
"\n",
"# load a VSC openmpi module and export the library path so applications can find the shared objects\n",
"module load openmpi/4.1.6-gcc-12.2.0-exh7lqk\n",
"# depending on the package configuration the LD_LIBRARY_PATH is not set to the lib folder\n",
"# so we need to set it explicitly from LIBRARY_PATH thats usually used for compling code\n",
"export LD_LIBRARY_PATH=\"$LIBRARY_PATH:$LD_LIBRARY_PATH\"\n",
"\n",
"# run some commands for introspection\n",
"echo \">> Pip: $( which pip )\"\n",
"echo \">> Installed packages\"\n",
"pip list --verbose\n",
"echo \">> Python: $( python3 --version ) from $( which python3 )\"\n",
"\n",
"# run a program in the allocation\n",
"export PYTHONPATH=tooling/:$PYTHONPATH\n",
"python3 examples/mpi_numpy_test.py"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "101cd61a-3cbc-4ee5-b733-6a3e0793a0bc",
"metadata": {},
"outputs": [],
"source": [
"!source tooling/unload_jupyter_env.sh && sbatch temp/slurm/job-python-conda.sh"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "31258c31-756f-4dcd-9863-440be8165211",
"metadata": {},
"outputs": [],
"source": [
"!squeue --me"
]
},
{
"cell_type": "markdown",
"id": "4d89d6f1-b016-4d52-83b9-c6e92ff1011e",
"metadata": {},
"source": [
"# Slurm and Apptainer"
]
},
{
"cell_type": "markdown",
"id": "cf5504f7-e9c7-4f39-8692-6c5b814c07c5",
"metadata": {},
"source": [
"Running Apptainer images from a Slurm batch script is pretty similar to using other environment options but we have a couple of more options regarding e.g. bindmounts & passthrough of hardware etc.\n",
"\n",
"In a nutshell we simply have to load an apptainer module and then execute the application or script.\n",
"\n",
"The application we execute does not necessarily need to be contained in the apptainer image since apptainer automatically mounts the users home directory. We simply use the container as executing environment.\n",
"\n",
"If we need other external directories these can also be mounted to be accessible from within the container."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9176ad5d-75a7-48d4-bd29-241899d4150d",
"metadata": {},
"outputs": [],
"source": [
"%%writefile temp/slurm/job-python-apptainer.sh\n",
"#!/bin/bash\n",
"\n",
"#SBATCH --job-name=python-apptainer\n",
"#SBATCH --output=temp/slurm/slurm-python-apptainer-%j.out\n",
"\n",
"#SBATCH --account=p70824 # set the account to use (for billing)\n",
"#SBATCH --qos=zen3_0512 # qos\n",
"#SBATCH --reservation=jh_training_python4hpc_1 # during training we have a fixed reservation\n",
"\n",
"#SBATCH --partition=zen3_0512 # hardware to use\n",
"#SBATCH --time=00:05:00 # maximum time of 5 min for testing\n",
"\n",
"#SBATCH --ntasks=4 # use 4 cpus\n",
"#SBATCH --mem=2G # and 2G of memory\n",
"\n",
"# abort on bash errors\n",
"set -e\n",
"\n",
"# load apptainer\n",
"module purge\n",
"module load --auto apptainer/1.1.6-gcc-12.2.0-xxfuqni\n",
"\n",
"# in order to make openmpi work with the container we have to load the module\n",
"module load openmpi/4.1.6-gcc-12.2.0-exh7lqk\n",
"# add the LIBRARY_PATH that was set by the modules to the LD_LIBRARY_PATH in the container\n",
"export APPTAINERENV_LD_LIBRARY_PATH=\"$LIBRARY_PATH\"\n",
"# and bind the software package tree as well as the system's gpfs library (!hacky!)\n",
"export APPTAINER_BIND=\"/gpfs/opt/sw/:/gpfs/opt/sw/,/lib64/libgpfs.so:/lib/libgpfs.so\"\n",
"\n",
"# run a program using the resource allocation via apptainer image\n",
"# the 'example' path does not need to be present in the image since apptainer\n",
"# automatically mounts the home directory of the executing user\n",
"export PYTHONPATH=tooling/:$PYTHONPATH\n",
"apptainer exec temp/env/apptainer-mpi.sif python3 ./examples/mpi_numpy_test.py"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "61116363-d966-416d-be8d-228e548d71f2",
"metadata": {},
"outputs": [],
"source": [
"!source tooling/unload_jupyter_env.sh && sbatch temp/slurm/job-python-apptainer.sh"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "03b4376b-1301-4c01-80f1-cf0f549e2a22",
"metadata": {},
"outputs": [],
"source": [
"!squeue --me"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9fede467-289a-4035-b296-0a081b34b2d1",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}