Newer
Older
#from ngsolve.internal import *
def assert_almost(a, b, eps = 1e-3, message=""):
if a < 1e-10 and b < 1e-10 :
return
assert abs((a-b)/a)*100 < eps, message+f": a:{a}, b:{b}, eps:{eps}, result:{abs((a-b)/a)*100}"
def rotationCF(mesh, xshift, yshift, angle, dimension=2, domains=["rotor"]):
from ngsolve import CF, cos, sin, x, y, z, Id
if dimension == 2:
rotmat = CF( (cos(angle), -sin(angle), sin(angle), cos(angle)), dims=(2,2))
shift = CF( (xshift, yshift) )
pos = CF( (x,y) )
trans_CF = (rotmat - Id(2))*(pos - shift) - shift
return CF( [trans_CF if mat in domains else (0, 0)for mat in mesh.GetMaterials()])
else:
rotmat = CF( (cos(angle), -sin(angle), 0, sin(angle), cos(angle), 0, 0, 0, 1), dims=(3,3))
shift = CF( (xshift, yshift, 0) )
pos = CF( (x,y, z) )
trans_CF = (rotmat - Id(3))*(pos - shift) - shift
return CF( [trans_CF if mat in domains else (0, 0, 0) for mat in mesh.GetMaterials()])
class selfFillingList:
# [[string key, int index, int appearence]]
def __init__(self, startvalue=1):
self.data = []
self.current_index = startvalue
def __getFullRow__(self, key):
isIt = [key == line[0] for line in self.data]
isIn = sum(isIt)
if len(self.data) == 0 or not isIn:
self.data += [[key, self.current_index, 1]]
self.current_index += 1
ind = -1
else:
ind = isIt.index(True)
self.data[ind][2] += 1
return self.data[ind]
def __getitem__(self, key):
return self.__getFullRow__(key)[1]
def __setitem__(self, key, val):
self.__getFullRow__(key)[1] = val
def isused(self, key):
return self.__getFullRow__(key)[2] > 0
def keys(self):
return [line[0] for line in self.data]
def values(self):
return [line[1] for line in self.data]
def numberofcalls(self):
return [line[2] for line in self.data]
def __setCurrentIndex__(self, value):
self.current_index = value
def __sep__(x, N, scale=1):
import numpy as np
if isinstance(N, int):
return list(np.ones(N)*1/N*x*scale)
elif isinstance(N, bool):
print("auto-replacee bool value to 1")
input()
return list(np.ones(N)*x*scale)
else:
return list(x* np.array(N)/np.sum(N)*scale)
def halfArray(a, secondHalf=True, inPlace=False):
import numpy as np
b = np.array(a, dtype="float")
if len(b) == 1:
b[0] /= 2
if not inPlace:
return list(b)
else:
a[0] /= 2
if secondHalf:
b = b[int(len(b)/2):]
else:
b = b[:int((len(b)+1)/2)]
if len(a) % 2== 1 and secondHalf:
b[0] /= 2
elif len(a) % 2== 1 and not secondHalf:
b[-1] /= 2
if sum(a) != 0 and abs((sum(a)/2 - sum(b))/sum(b)) > 1e-5:
myBreak(locals(), globals(), file=__file__.split('/')[-1])
raise ValueError("sum(a)/2 not sum(b) in __halfArray__")
if not inPlace:
if isinstance(b, np.ndarray):
b = list(b)
return b
elif isinstance(a, list):
a.clear()
a += list(b)
elif isinstance(a, np.ndarray):
a.resize(len(b), refcheck=False)
a[:] = b[:]
def loadView(N=1, filename="./viewOpt.txt"):
try:
for i in range(N):
exec(open(filename).read())
except Exception as e:
print(str(e))
def addExec(var_loc, var_glo={}, filename="./addExec.txt"):
try:
exec(open(filename).read(), var_glo, var_loc)
except Exception as e:
print(str(e))
def myBreak(var_loc, var_glo={}, file="breakpoint"):
from inspect import currentframe
cf = currentframe().f_back.f_lineno
return cmdInput(var_loc, var_glo, file+"::"+str(cf)+" >> ")
def cmdInput(var_loc, var_glo={}, text="input your command:\n>> "):
try:
open('.inputrc', 'a').close() # manually create the necesasry file
except Exception as e2:
print(str(e1) +"\n" + str(e2))
import readline
import rlcompleter
#usage : locals, globals = cmdInput(locals(), globals())
vars = var_glo
vars.update(var_loc)
readline.set_completer(rlcompleter.Completer(vars).complete)
readline.parse_and_bind("tab: complete")
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
if 'libedit' in readline.__doc__:
readline.parse_and_bind("bind ^I rl_complete")
else:
readline.parse_and_bind("tab: complete")
cmd = "start"
while cmd != "" and cmd != "exit" and cmd != "quit":
cmd = input(text)
if cmd == "exit" or cmd=="exit()":
exit()
text = ">> "
try:
returnvalue = eval(cmd, var_glo, var_loc)
print(returnvalue)
except Exception as e1:
try:
exec(cmd, var_glo, var_loc)
except Exception as e2:
print(str(e1) +"\n" + str(e2))
return var_loc, var_glo
# evaluate myCF in the mesh from pnt1 to pnt2 in N steps
def evalOnLine(myCF, mesh, pnt1, pnt2=[0, 0, 0], N=100, plot=False, complex="real", clear=True, yoff=0, title="measurement"):
import numpy as np
import matplotlib.pyplot as plt
if pnt2 == [0, 0, 0]:
pnt2 = pnt1
pnt1 = [0, 0, 0]
pnt1 = np.array(pnt1)
pnt2 = np.array(pnt2)
v = pnt2-pnt1
normv = np.linalg.norm(v)
if normv == 0:
return [0]
ev = v/normv
if isinstance(N, int):
xi = np.linspace(0, normv, N)
else:
xi = N
if complex == "imag":
yi = [myCF.imag(mesh(pnt1[0] + ev[0]*x, pnt1[1] + ev[1]*x, pnt1[2] + ev[2]*x)) for x in xi]
elif complex == "real":
yi = [myCF.real(mesh(pnt1[0] + ev[0]*x, pnt1[1] + ev[1]*x, pnt1[2] + ev[2]*x)) for x in xi]
else:
# yi = [((myCF.imag**2+myCF.real**2)**0.5)(mesh(pnt1[0] + ev[0]*x, pnt1[1] + ev[1]*x, pnt1[2] + ev[2]*x)) for x in xi]
yi = [((myCF.imag**2+myCF.real**2)**0.5)(mesh(pnt1[0] + ev[0]*x, pnt1[1] + ev[1]*x)) for x in xi]
fig = None
if plot != False:
fig = plt.figure(plot)
if clear:
plt.clf()
plt.plot(xi,np.array(yi) + yoff, '-')
plt.title(title)
if len(np.shape(yi)) > 1:
plt.legend([str(i+1) for i in range(np.shape(yi)[1])])
plt.pause(0.1)
return xi, yi, fig
def drawDomains(mesh, drawFunc=None):
from ngsolve import CF
if drawFunc == None:
from ngsolve import Draw
drawFunc = Draw
drawFunc(CF(list(range(len(mesh.GetMaterials())))), mesh, "domains")
def drawBndAll(mesh, block=True, old=False, drawFunc=None):
[drawBnd(mesh, x, block, old, drawFunc=drawFunc) for x in set(mesh.GetBoundaries())]
# colour the boundaries of a mesh. (Set the according boundarie to a value 2)
# use :
# [drawBnd(mesh, x) for x in ["bottom", "right", "top", "left", "ibot", "itop", "interface", "natural", "iright", "ileft"]]
# to colour all boundaries in a mesh
def drawBnd(mesh, name="bottom|right|top|left|ibot|itop|interface|ileft|iright|natural", block=False, old=False, drawFunc=None):
from ngsolve import CF, H1, GridFunction, BND, Integrate
if drawFunc == None:
from ngsolve import Draw
drawFunc = Draw
val = {bnd:1 for bnd in name.split("|")}
if old:
fes = H1(mesh, dirichlet=name)
sol = GridFunction(fes, "bnd")
sol.Set(CF([val[bnd] if bnd in val.keys() else 0 for bnd in mesh.GetBoundaries()]), VOL_or_BND=BND)
print("-----", name, sum(sol.vec))
else:
bnd_CF = CF([val[bnd] if bnd in val.keys() else 0 for bnd in mesh.GetBoundaries()])
drawFunc(bnd_CF, mesh, "bnd", draw_vol=False)
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
print("-----", name, Integrate(bnd_CF, mesh, VOL_or_BND=BND))
if block:
cmdInput(locals(), globals())
# for preisach testing
def getLines(val, N):
import numpy as np
ret = np.array([])
for i in range(0, len(val)-1):
ret = np.hstack([ret, np.linspace(val[i], val[i+1], N, endpoint=(i == len(val) - 2))])
return ret
def plotDist(dist, fig = 0, weights = False):
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
o = dist.getPoints()
sp = np.zeros([len(o), 4])
for i in range(len(o)):
sp[i, :] = np.array([o[i].first, o[i].second, o[i].third, i])
if weights:
sp[i, 0:3] *= o[i].fourth
fig = plt.figure(fig)#, figsize=plt.figaspect(2))
plt.clf()
ax = plt.axes(projection='3d')
# ax = fig.gca(projection='3d')
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
#ax = fig.add_subplot(2, 1, 2, projection='3d')
plt.ion()
ax.scatter( sp[:, 0], sp[:, 1], sp[:, 2])#, c=1, vmin=-1, vmax=1,s=50)
for i in range(np.shape(sp)[0]):
ax.text(sp[i, 0], sp[i, 1], sp[i, 2], int(sp[i, 3]))
#pB = ax.scatter( spherePoints[0,:], y, z, s= 10, c='r')
if weights:
tmp = np.max(np.max(np.abs(sp[:, 0:3])))
plt.xlim(-tmp,tmp)
plt.ylim(-tmp,tmp)
ax.set_zlim3d(-tmp, tmp)
else:
plt.xlim(-1,1)
plt.ylim(-1,1)
ax.set_zlim3d(-1, 1)
plt.draw()
if dist.halfSphere:
plt.title("halfSphere " +dist.name )
else:
plt.title(dist.name)
plt.show()
plt.pause(0.1)
def plotSPTriag(p, ax=-1, text=True):
import matplotlib.pyplot as plt
import numpy as np
points = p.getPointList()
maxH = p.getEV().maxH
maxHin = p.getMaxHin
outer = [ [-maxH, -maxH], [-maxH, maxH], [maxH, maxH], [-maxH, -maxH]]
#perfect Demag
perfDemag = [[-maxH, maxH], [-maxHin, maxHin]]
inner = [[-maxH, -maxH], [-maxH, maxH], [-maxHin, maxHin]]
for i in range(len(points)):
inner.append([inner[-1][0], points[i].first])
inner.append([points[i].second, points[i].first])
inner.append([-maxH, -maxH])
inner = np.array(inner)
outer = np.array(outer)
perfDemag = np.array(perfDemag)
if ax == -1:
fig = plt.figure()
ax = fig.add_subplot(111)
ax.clear()
ax.set_aspect('equal')
ax.fill(inner[:, 0], inner[:, 1], edgecolor="black")
ax.plot(outer[:, 0], outer[:, 1], 'b')
ax.plot(perfDemag[:, 0], perfDemag[:, 1], 'r')
if text:
ax.text(-maxH*1/5, -1*maxH/3, "B = " + str(np.round(p.getB_interpolated(), 3)))
ax.text(-maxH*1/5, -1.7*maxH/3, "H = " + str(np.round(p.getH_interpolated(), 3)))
return ax
def plotPV(pV, nFig = 0, field="HB", numbers=False, label=True, file=None):
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
B = []
H = []
dist = pV.getDist()
for i in range(pV.size):
pS = pV.getPreisachScalar(i)
xyzW = pS.getXYZW
xyz = np.array([xyzW.first, xyzW.second, xyzW.third])
B.append(pS.getB_interpolated()*1/pV.getMaxB*xyz)
H.append(pS.getH_interpolated()*1/pV.getMaxH*xyz)
B = np.array(B)
H = np.array(H)
fig = plt.figure(nFig)#, figsize=plt.figaspect(2))
plt.clf()
ax = plt.axes(projection='3d')
# ax = fig.gca(projection='3d')
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
#ax = fig.add_subplot(2, 1, 2, projection='3d')
B_val = np.array([pV.getB().first, pV.getB().second, pV.getB().third])
H_val = np.array([pV.getH().first, pV.getH().second, pV.getH().third])
plt.ion()
ax.set_zlim3d(-1, 1)
plt.xlim(-1,1)
plt.ylim(-1,1)
#ax.scatter( sp[0,:], sp[1,:], sp[2,:])#, c=1, vmin=-1, vmax=1,s=50)
if field == "HB":
pB = ax.scatter( B[:,0], B[:,1], B[:,2], s= 10, c='r',
label = ' %.2lf\nB = [ %.2lf ]\n %.2lf'%(B_val[0],B_val[1],B_val[2]))
pH = ax.scatter( H[:,0], H[:,1], H[:,2], s= 10, c='g',
label = ' %.2lf\nH = [ %.2lf ]\n %.2lf'%(H_val[0],H_val[1],H_val[2]))
elif field == "H":
pH = ax.scatter( H[:,0], H[:,1], H[:,2], s= 10, c='g',
label = ' %.2lf\nH = [ %.2lf ]\n %.2lf'%(H_val[0],H_val[1],H_val[2]))
elif field == "B":
pB = ax.scatter( B[:,0], B[:,1], B[:,2], s= 10, c='r',
label = ' %.2lf\nB = [ %.2lf ]\n %.2lf'%(B_val[0],B_val[1],B_val[2]))
else:
print("use field = H, B or HB")
exit()
#ax.set_title("Unit Cube")
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")
ax.set_title("Distribution of Scalar Preisach Models")
#plt.colorbar()
plt.ioff()
plt.legend(
scatterpoints=1,
loc='lower left',
ncol=2,
fontsize=12)
if numbers:
for i in range(P.size):
ax.text(sp[i, 0], sp[i, 1], sp[i, 2], int(sp[i, 3]))
if dist.halfSphere:
plt.title("halfSphere " +dist.name )
else:
plt.title(dist.name)
plt.pause(0.1)
if file != None:
plt.savefig(file)
def plotEVF(ev, nFig = 0):
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
vec = ev.GetVecH()
X, Y = np.meshgrid(vec, vec)
#Z = np.nan * np.zeros(np.shape(X))
Z = np.zeros(np.shape(X))
for i in range(len(vec)):
for j in range(len(vec) ):
if( j > i):
continue
Z[i, j] = ev.GetValue(X[i, j], Y[i, j])
if np.isnan(Z[i, j]):
print(X[i, j], Y[i, j], "\t->\t", Z[i, j])
fig = plt.figure(nFig)#, figsize=plt.figaspect(2))
plt.clf()
ax = plt.axes(projection='3d')
#ax = fig.add_subplot(2, 1, 2, projection='3d')
ax.plot_surface( X, Y, Z)#, c=1, vmin=-1, vmax=1,s=50)
#pB = ax.scatter( spherePoints[0,:], y, z, s= 10, c='r')
# ax.set_zlim3d(-1, 1)
# plt.xlim(-1,1)
# plt.ylim(-1,1)
#plt.xticks(vec)
#plt.yticks(vec)
Z = np.flipud(Z)
plt.title(ev.name + " , dim=" + str(ev.dim))
fig =plt.figure()
ax = fig.add_subplot(111)
ax.matshow(Z)
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
def KLMinMax(H_KL, B_KL, inverse=False, diff=True):
import numpy as np
if not diff:
H_KL = np.array(H_KL)
B_KL = np.array(B_KL)
ind = H_KL != 0
mu = B_KL[ind]/H_KL[ind]
return np.min(mu), np.max(mu)
mu_diff_min = np.nan
mu_diff_max = np.nan
for i in range(len(H_KL)-1):
if(H_KL[i+1] <= H_KL[i] or B_KL[i+1] <= B_KL[i]):
print("KL is wrong ! - myPackage.py")
print(H_KL[i+1], H_KL[i])
print(B_KL[i+1], B_KL[i])
continue
# raise ValueError("invalid KL")
if not inverse:
mu_diff = (B_KL[i+1] - B_KL[i])/(H_KL[i+1] - H_KL[i]);
else:
mu_diff = (H_KL[i+1] - H_KL[i])/(B_KL[i+1] - B_KL[i]);
if(np.isnan(mu_diff_min) or mu_diff < mu_diff_min):
mu_diff_min = mu_diff
if(np.isnan(mu_diff_max) or mu_diff > mu_diff_max):
mu_diff_max = mu_diff
return mu_diff_min, mu_diff_max
def diagCF(val=1):
from ngsolve import CF
return CF((val, 0, 0, 0, val, 0, 0, 0, val), dims=(3,3))
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
# ------------------------------------------------------------------------------------
# measurement/evaluating of CF and (Integration without ngsolve) on defined area
# ------------------------------------------------------------------------------------
def getScalarFromVec(vec, dim="norm"):
if dim == "norm":
out = np.linalg.norm(vec)
elif dim == "x":
out = vec[0]
elif dim == "y":
out = vec[1]
elif dim == "z":
out = vec[2]
else:
print("wrong parameter in getScalarFromVec()")
exit()
return out
def measure_top(mesh, B_CF, variable2show="norm", granularity_xy=[2,2]):
return measure(mesh, B_CF, point_lb=[0, 96+39, 93.533/2+3], point_rt=[47+13, 96+39+40, 93.533/2+3], variable2show=variable2show, granularity_xy=granularity_xy)
def measure_front(mesh, B_CF, variable2show="norm", granularity_xy=[2,2]):
return measure(mesh, B_CF, point_lb=[47+13, 96+39, 93.533/2+3-60], point_rt=[47+13, 96+39+40, 93.533/2+3], variable2show=variable2show, granularity_xy=granularity_xy)
def measure_back(mesh, B_CF, variable2show="norm", granularity_xy=[2,2]):
return measure(mesh, B_CF, point_lb=[-47-13, 96+39, 93.533/2+3-60], point_rt=[-47-13, 96+39+40, 93.533/2+3], variable2show=variable2show, granularity_xy=granularity_xy)
def measure(mesh, B_CF, point_lb=[0, 96+39, 93.533/2+3], point_rt=[47+13, 96+39+40, 93.533/2+3], variable2show="norm", granularity_xy=[2,2], scale=1e-3):
#default for topmsm
tmp = np.array(point_lb) == np.array(point_rt)
#check which layerpoint_lb
if np.all(tmp == 0):
print("not a vaild input data - check coordinates, only ortho layers are allowed")
return -1, -1
if tmp[0] == 1:
# yz layer
yi = np.arange(point_lb[1], point_rt[1] + granularity_xy[0], granularity_xy[0], dtype='float')
zi = np.arange(point_lb[2], point_rt[2] + granularity_xy[1], granularity_xy[1], dtype='float')
Y,Z = np.meshgrid(yi, zi)
X = np.ones(np.shape(Y), dtype='float')*point_lb[0]
elif tmp[1] == 1:
# xz layer
xi = np.arange(point_lb[0], point_rt[0] + granularity_xy[0], granularity_xy[0], dtype='float')
zi = np.arange(point_lb[2], point_rt[2] + granularity_xy[1], granularity_xy[1], dtype='float')
X,Z = np.meshgrid(xi, zi)
Y = np.ones(np.shape(X), dtype='float')*point_lb[1]
elif tmp[2] == 1:
# xy layer
xi = np.arange(point_lb[0], point_rt[0] + granularity_xy[0], granularity_xy[0], dtype='float')
yi = np.arange(point_lb[1], point_rt[1] + granularity_xy[1], granularity_xy[1], dtype='float')
X,Y = np.meshgrid(xi, yi)
Z = np.ones(np.shape(Y), dtype='float')*point_lb[2]
B = np.zeros(np.shape(X))
X *= scale
Y *= scale
Z *= scale
useAbs=0
# evaluate
for i in range(0, np.size(B, 0)):
for j in range(0, np.size(B, 1)):
try:
if useAbs == 0:
val = B_CF(mesh(X[i,j], Y[i,j], Z[i,j])) # !!! abs - caused by eighth problem !!! otherwise error
else:
val = B_CF(mesh(abs(X[i,j]), abs(Y[i,j]), abs(Z[i,j])))
val = np.array(val)
B[i, j] = getScalarFromVec(val, dim=variable2show)
except:
print("invalid point -> trying abs(X,Y,Z)")
try:
val = B_CF(mesh(abs(X[i,j]), abs(Y[i,j]), abs(Z[i,j]))) # !!! abs - caused by eighth problem !!! otherwise error
useAbs=1
val = np.array(val)
B[i, j] = getScalarFromVec(val, dim=variable2show)
except:
print("no, not working")
return -1, 1
#integrate B to Phi
if tmp[0] == 1:
# yz layer
Phi_vec = np.trapz(B, x=yi*scale, axis=1)
Phi = np.trapz(Phi_vec, x=zi*scale)
elif tmp[1] == 1:
# xz layer
Phi_vec = np.trapz(B, x=xi*scale, axis=1)
Phi = np.trapz(Phi_vec, x=zi*scale)
elif tmp[2] == 1:
# xy layer
Phi_vec = np.trapz(B, x=xi*scale, axis=1)
Phi = np.trapz(Phi_vec, x=yi*scale)
return B, Phi
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
def getOrthoBaseR3(v1):
import numpy as np
#projection of v into u
def projection(v, u):
scal = np.inner(v, u)
if scal != 0:
ret = np.inner(v, u)/np.inner(u, u) * u
else:
ret = np.array([0, 0, 0])
return ret
v1 = np.array(v1)
v2 = np.roll(v1, 1)
v3 = np.roll(v2, 1)
# Gram Schwidt
u1 = v1
u2 = v2 - projection(v2, u1)
u3 = v3 - projection(v3, u2) - projection(v3, u1)
assert np.inner(u1, u2) <= 1e-9
assert np.inner(u2, u3) <= 1e-9
assert np.inner(u1, u3) <= 1e-9
return u1/np.linalg.norm(u1), u2/np.linalg.norm(u2), u3/np.linalg.norm(u3)
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
# ------------------------------------------------------------------------------------
# MultiScale micorshape functions
# ------------------------------------------------------------------------------------
def createPhiCF_independent(x_CF, y_CF, z_CF, size_core=[20, 20, 20], num_sheets=15, ratio_medium2total=0.9, multi_scale_combination=[1, 5]):
from numpy import array
from ngsolve import IfPos
scale = 1e-3
size_core = array(size_core)*scale
# heights of medium and air
height_core_medium = size_core[2]/num_sheets * ratio_medium2total
height_core_air = size_core[2]/(num_sheets-1) * (1-ratio_medium2total)
height_core_single = height_core_medium + height_core_air
# total mask
x_mask_min = IfPos(x_CF + size_core[0]/2, 1, 0)
x_mask_max = IfPos(x_CF - size_core[0]/2, 0, 1)
y_mask_min = IfPos(y_CF + size_core[1]/2, 1, 0)
y_mask_max = IfPos(y_CF - size_core[1]/2, 0, 1)
z_mask_min = IfPos(z_CF + size_core[2]/2, 1, 0)
z_mask_max = IfPos(z_CF - size_core[2]/2, 0, 1)
# dz
dz_medium = 2/height_core_medium
dz_air = -2/height_core_air
# start point
z_min_coordinate = -size_core[2]/2
Phi_CF = 0
dzPhi_CF = 0
# Medium_CF = 0
for i in range(0, num_sheets):
# for air
z_max = IfPos(z_CF - z_min_coordinate - (i+1) * height_core_single , 0, 1) # air
z_mid_max = IfPos(z_CF - z_min_coordinate - i * height_core_single - height_core_medium, 1, 0)
# air =1 -> x_max*x_mid_max
# for medium
z_mid_min = IfPos(z_CF - z_min_coordinate - i * height_core_single - height_core_medium, 0, 1) # medium
z_min = IfPos(z_CF - z_min_coordinate - i * height_core_single, 1, 0)
# medium zick zack
Phi_CF += (dz_medium*(z_CF - z_min_coordinate - i * height_core_single) - 1)*(z_min*z_mid_min)
dzPhi_CF += dz_medium * (z_min*z_mid_min)
# Medium_CF += x_min*x_mid_min
# air zickzack
if i != num_sheets -1:
Phi_CF += (dz_air*(z_CF - z_min_coordinate - i * height_core_single - height_core_medium) + 1)*(z_max*z_mid_max)
dzPhi_CF += dz_air * (z_max*z_mid_max)
# mask zick zack to medium
Phi_CF *= x_mask_min * x_mask_max * y_mask_min * y_mask_max* z_mask_min * z_mask_max
dzPhi_CF *= x_mask_min * x_mask_max * y_mask_min * y_mask_max* z_mask_min * z_mask_max
return Phi_CF, dzPhi_CF
def createPhiCF_domains(mesh, x_CF, y_CF, z_CF, size_core=[20, 20, 20], num_sheets=15, ratio_medium2total=0.9):
scale = 1e-3
size_core = np.array(size_core)*scale
# heights of medium and air
height_core_medium = size_core[2]/num_sheets * ratio_medium2total
height_core_air = size_core[2]/(num_sheets-1) * (1-ratio_medium2total)
height_core_single = height_core_medium + height_core_air
# dz
dz_medium = 2/height_core_medium
dz_gap = -2/height_core_air
# start point
z_min_coordinate = -size_core[2]/2
Phi_CF_iron = 0
Phi_CF_gap = 0
for i in range(0, num_sheets):
# for air
z_max = IfPos(z_CF - z_min_coordinate - (i+1) * height_core_single , 0, 1) # air
z_mid_max = IfPos(z_CF - z_min_coordinate - i * height_core_single - height_core_medium, 1, 0)
# air =1 -> x_max*x_mid_max
# for medium
z_mid_min = IfPos(z_CF - z_min_coordinate - i * height_core_single - height_core_medium, 0, 1) # medium
z_min = IfPos(z_CF - z_min_coordinate - i * height_core_single, 1, 0)
# medium zick zack
Phi_CF_iron += (dz_medium*(z_CF - z_min_coordinate - i * height_core_single) - 1)*(z_min*z_mid_min)
# Medium_CF += x_min*x_mid_min
# air zickzack
if i != num_sheets -1:
Phi_CF_gap += (dz_gap*(z_CF - z_min_coordinate - i * height_core_single - height_core_medium) + 1)*(z_max*z_mid_max)
val = {"air":0, "iron":Phi_CF_iron, "gap":Phi_CF_gap}
Phi_CF = CoefficientFunction([val[mat] for mat in mesh.GetMaterials()])
val = {"air":0, "iron":dz_medium, "gap":dz_gap}
dzPhi_CF = CoefficientFunction([val[mat] for mat in mesh.GetMaterials()])
return Phi_CF, dzPhi_CF
# 1d Draw
from ngsolve import Mesh, GridFunction
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm
class Draw1d:
def __init__(self, CF, mesh=None, name=None, N = 5, fig=None, ax=None, draw_mesh=False, new_frame = False, **kwargs):
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
# draw a mesh Draw(mesh)
if isinstance(CF, Mesh):
self.mesh = CF
self.name = "mesh"
self.CF = None
# draw a gridfunction Draw(GF)
elif isinstance(CF, GridFunction) and (mesh == None and name == None):
self.mesh = CF.space.mesh
self.name = CF.name
self.CF = CF
else: # draw a CF Draw(CF, mesh, "name")
self.CF = CF
self.mesh = mesh
self.name = name
assert self.mesh.dim == 1, "use this Draw class only for 1D meshes"
self.pnts = np.array([i[0] for i in self.mesh.ngmesh.Points()])
# evaluation points on ref element
self.eval_pnts = np.linspace(0, 1, N)
# all points in element
self.eval_pnts[0] += 1e-3
self.eval_pnts[-1] -= 1e-3
self.fig = fig
self.draw_mesh = draw_mesh
self.Redraw(new_frame=new_frame, **kwargs)
def Redraw(self, new_frame=False, **kwargs ):
if "c" not in kwargs.keys():
kwargs.update({"c":"b"})
self.fig = plt.gcf()
if self.fig == None or new_frame:
self.fig = plt.figure(figsize=[16, 5])
plt.figure(self.fig)
if self.ax != None:
ax = plt.subplot(self.ax[0], self.ax[1], self.ax[2])
ax.clear()
else:
plt.clf()
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
# draw mesh
if self.CF==None:
# vertices
# domains
doms = [int(e[-1]) for e in self.mesh.ngmesh.Elements1D().__str__().split("\n") if len(e) > 0]
colourmap = cm.get_cmap('Set1', len(set(doms)))
[plt.plot([self.pnts[i], self.pnts[i+1]], [0, 0], c=colourmap(doms[i]-1), lw=10 ) for i in range(len(doms))]
plt.plot(self.pnts, np.zeros(np.shape(self.pnts)), "ok", label="mesh")
plt.title("Mesh")
# dom_nam = self.mesh.GetMaterials()
# ,label=dom_nam[doms[i]-1]
# plt.legend()
else:
# vertices
roots = np.zeros(len(self.eval_pnts)*(len(self.pnts)-1))
values = np.zeros([len(roots), self.CF.dim])
for i in range(len(self.pnts) - 1):
dx = (self.pnts[i+1]-self.pnts[i])
for j in range(len(self.eval_pnts)):
roots[i*len(self.eval_pnts)+j] = self.pnts[i] + self.eval_pnts[j]* dx
values[i*len(self.eval_pnts)+j] = self.CF(self.mesh(roots[i*len(self.eval_pnts)+j], 0, 0))
# plot scalar
if self.CF.dim == 1:
ind = lambda i: slice(i*len(self.eval_pnts),(i+1)*len(self.eval_pnts))
[plt.plot(roots[ind(i)], values[ind(i)], label =self.name, **kwargs) for i in range(len(self.pnts))]
plt.title(self.name)
# plot vec
else:
plt.quiver(roots, np.zeros(np.shape(roots)), values[:, 0], values[:,1], np.linalg.norm(values, axis=1), label =self.name)
plt.title(self.name)
if self.draw_mesh:
plt.plot(self.pnts, np.zeros(np.shape(self.pnts)), "ok", label="mesh")