Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#####################################################################
# #
# ADwinProII/labscript_devices.py #
# #
# Copyright 2022, TU Vienna #
# #
# Implementation of the ADwin-Pro II for the labscript-suite, #
# used in the Léonard lab for Experimental Quantum Information. #
# #
#####################################################################
from labscript import Device, Pseudoclock, PseudoclockDevice, IntermediateDevice, ClockLine, AnalogOut, DigitalOut, bitfield, config, LabscriptError
from labscript.functions import ramp, sine, sine_ramp, sine4_ramp, sine4_reverse_ramp, exp_ramp, exp_ramp_t
import numpy as np
default_cycle_time = 2500/1e9 # T12 Processor has 1GHz clock rate, TODO Cycle time in ADbasic
# Notes:
# The ADWin (T12) runs at 1 GHz. The cycle time should be specified in hardware programming in units of this clock speed.
# Subsequently, instruction timing must be specified in units of cycles.
# Voltages are specified with a 16 bit unsigned integer, mapping the range [-10,10) volts.
# There are 32 digital outputs on a card (DIO-32-TiCo)
# There are 8 analog outputs on a card (AOut-8/16)
# There are 8 analog inputs on a card (AIn-F-8/16)
class _ADwinProII(Pseudoclock):
def add_device(self, device):
if isinstance(device, ClockLine):
# only allow one child
if self.child_devices:
raise LabscriptError('The pseudoclock of the ADwin-Pro II %s only supports 1 clockline, which is automatically created. Please use the clockline located at %s.clockline'%(self.parent_device.name, self.parent_device.name))
Pseudoclock.add_device(self, device)
else:
raise LabscriptError('You have connected %s to %s (the Pseudoclock of %s), but %s only supports children that are ClockLines. Please connect your device to %s.clockline instead.'%(device.name, self.name, self.parent_device.name, self.name, self.parent_device.name))
class ADwinAnalogOut(AnalogOut):
def linear_ramp(self, t, duration, initial, final):
#instruction = LinearRamp(t, duration, initial, final, self.parent_device.clock_limit)
#self.add_instruction(t, instruction)
#return instruction.duration
pass
def sin_ramp(self, t, duration, amplitude, offset, angular_period):
#instruction = SinRamp(t, duration, amplitude, offset, angular_period, self.parent_device.clock_limit)
#self.add_instruction(t, instruction)
#return instruction.duration
pass
def cos_ramp(self, t, duration, amplitude, offset, angular_period):
#instruction = CosRamp(t, duration, amplitude, offset, angular_period, self.parent_device.clock_limit)
#self.add_instruction(t, instruction)
#return instruction.duration
pass
def exp_ramp(self, t, duration, amplitude, offset, time_constant):
#instruction = ExpRamp(t, duration, amplitude, offset, time_constant, self.parent_device.clock_limit)
#self.add_instruction(t, instruction)
#return instruction.duration
pass
class ADwinDigitalOut(DigitalOut):
pass
class ADwinCard(Pseudoclock):
clock_type = 'fast clock'
def __init__(self, name, parent_device, card_number):
self.clock_limit = parent_device.clock_limit
self.clock_resolution = parent_device.clock_resolution
# Device must be accessed via the parent ADWin, so we must store
# the parent's device_no as well as the card number:
self.card_number = card_number
self.BLACS_connection = parent_device.BLACS_connection, card_number
# We won't call IntermediateDevice.__init__(), as we don't care
# about the checks it does for clocking, we don't actually have
# a clock:
Device.__init__(self, name, parent_device, card_number)
self.trigger_times = []
self.wait_times = []
self.initial_trigger_time = 0
def trigger(self, t, *args):
if t == 'initial':
t = self.initial_trigger_time
self.trigger_times.append(t)
else:
raise NotImplementedError("AdWins do not have waits implemented in labscript or the current firmware.")
# Adwin cards are coordinated internally without the need for
# triggering devices. We split them up into pseudoclocks in
# labscript because they are modular in nature, and it helps us
# be compatible with AdWins that have different card setups. But
# half of this pseudoclock stuff isn't relevant to this, so we
# override some methods to do nothing.
# def generate_code(self, hdf5_file):
# # We don't actually need to expand out ramps and construct a pseudoclock or anything
# # but we will anyway so that we have something to plot in runviewer
# expanded_change_times
# for output in self.get_all_outputs():
class ADwin_AO_Card(ADwinCard):
description = 'ADWin analog output card'
allowed_children = [AnalogOut]
def generate_code(self, hdf5_file):
Device.generate_code(self, hdf5_file)
# This group must exist in order for BLACS to know that this
# device is part of the experiment:
group = hdf5_file.create_group('/devices/%s'%self.name)
# OK, let's collect up all the analog instructions!
self.formatted_instructions = []
for output in self.get_all_outputs():
for t, instruction in output.instructions.items():
card_number = self.card_number
channel_number = output.connection
#if isinstance(instruction, RampInstruction):
# duration = instruction.duration
# if isinstance(instruction, LinearRamp):
# ramp_type = 0
# elif isinstance(instruction, SinRamp):
# ramp_type = 1
# elif isinstance(instruction, CosRamp):
# ramp_type = 2
# elif isinstance(instruction, ExpRamp):
# ramp_type = 3
# else:
# raise ValueError(instruction)
# A = instruction.A
# B = instruction.B
# C = instruction.C
# else:
# # Let's construct a ramp out of the single value instruction:
# duration = self.clock_resolution
# ramp_type = 0
# A = instruction
# B = 0
# C = instruction
formatted_instruction = {'t':t,
'duration': duration,
'card': card_number,
'channel': channel_number,
'ramp_type': ramp_type,
'A': A, 'B': B, 'C': C}
self.formatted_instructions.append(formatted_instruction)
class ADwin_DO_Card(ADwinCard):
description = 'ADWin digital output card'
allowed_children = [DigitalOut]
digital_dtype = np.uint32
n_digitals = 32
def generate_code(self, hdf5_file):
Device.generate_code(self, hdf5_file)
# This group must exist in order for BLACS to know that this
# device is part of the experiment:
group = hdf5_file.create_group('/devices/%s'%self.name)
outputs = self.get_all_outputs()
change_times = self.collect_change_times(outputs)
for output in outputs:
output.make_timeseries(change_times)
for time in change_times:
outputarray = [0]*self.n_digitals
for output in outputs:
channel = output.connection
# We have to subtract one from the channel number to get
# the correct index, as ADWin is one-indexed, curse it.
outputarray[channel - 1] = np.array(output.timeseries)
bits = bitfield(outputarray, dtype=self.digital_dtype)
self.formatted_instructions = []
for t, value in zip(change_times, bits):
formatted_instruction = {'t': t, 'card': self.card_number,'bitfield': value}
self.formatted_instructions.append(formatted_instruction)
class ADwinProII(PseudoclockDevice):
description = 'ADWin-Pro II'
clock_limit = 10e6
clock_resolution = 25e-9
trigger_delay = 350e-9
wait_delay = 2.5e-6
allowed_children = [_ADwinProII]
max_instructions = 1e5
#allowed_children = [ADwin_AO_Card, ADwin_DO_Card] # TODO where should this go?? To clockline class?
def __init__(self, name="adwin", device_no=1, cycle_time = default_cycle_time, **kwargs):
PseudoclockDevice.__init__(self, name, None, None, **kwargs)
self.BLACS_connection = name + "_" + str(device_no)
self._pseudoclock = _ADwinProII(
name=f'{name}_pseudoclock',
pseudoclock_device=self,
connection='pseudoclock',
)
self._clock_line = ClockLine(
name=f'{name}_clock_line',
pseudoclock=self.pseudoclock,
connection='internal',
)
# round cycle time to the nearest multiple of 3.3333ns TODO WHY??
quantised_cycle_time = round(cycle_time/3.333333333333e-9)
cycle_time = quantised_cycle_time*3.333333333333e-9
self.clock_limit = 1./cycle_time
self.clock_resolution = cycle_time
self.trigger_times = []
self.wait_times = []
self.initial_trigger_time = 0
@property
def pseudoclock(self):
return self._pseudoclock
@property
def clockline(self):
return self._clock_line
def add_device(self, device):
if not self.child_devices and isinstance(device, Pseudoclock):
PseudoclockDevice.add_device(self, device)
elif isinstance(device, Pseudoclock):
raise LabscriptError('The %s automatically creates a Pseudoclock because it only supports one. '%(self.name) +
'Instead of instantiating your own Pseudoclock object, please use the internal' +
' one stored in %s.pseudoclock'%self.name)
else:
raise LabscriptError('You have connected %s (class %s) to %s, but %s does not support children with that class.'%(device.name, device.__class__, self.name, self.name))
def do_checks(self, outputs):
if self.trigger_times != [0]:
raise LabscriptError('ADWin does not support retriggering or waiting.')
for output in outputs:
output.do_checks(self.trigger_times)
def collect_card_instructions(self, hdf5_file):
group = hdf5_file.create_group('/devices/%s'%self.name)
all_analog_instructions = []
all_digital_instructions = []
for device in self.child_devices:
if isinstance(device, ADwin_AO_Card):
all_analog_instructions.extend(device.formatted_instructions)
elif isinstance(device, ADwin_DO_Card):
all_digital_instructions.extend(device.formatted_instructions)
else:
raise AssertionError("Invalid child device, shouldn't be possible")
# Make the analog output table:
analog_dtypes = [('t',np.uint), ('duration',int), ('card',int), ('channel',int),
('ramp_type',int), ('A',int), ('B',int), ('C',int)]
# sort by time:
all_analog_instructions.sort(key=lambda instruction: instruction['t'])
analog_data = np.zeros(len(all_analog_instructions)+1, dtype=analog_dtypes)
for i, instruction in enumerate(all_analog_instructions):
analog_data[i]['t'] = round(instruction['t']/self.clock_resolution)
analog_data[i]['duration'] = round(instruction['duration']/self.clock_resolution)
analog_data[i]['card'] = instruction['card']
analog_data[i]['channel'] = instruction['channel']
analog_data[i]['ramp_type'] = instruction['ramp_type']
if instruction['ramp_type'] in [0]:
# If it's a linear ramp, map the voltages for parameter A from the range [-10,10] to a uint16:
analog_data[i]['A'] = int((instruction['A']+10)/20.*(2**16-1))
elif instruction['ramp_type'] in [1,2,3]:
# For an exp, sine or cos ramp, map A from [-10,10] to a signed int16:
analog_data[i]['A'] = int(instruction['A']/10.*(2**15-1))
else:
raise RuntimeError('Sanity check failed: Invalid ramp type! Something has gone wrong.')
analog_data[i]['B'] = round(instruction['B']/self.clock_resolution) # B has units of time
analog_data[i]['C'] = int((instruction['C']+10)/20.*(2**16-1))
# Add the 'end of data' instruction to the end:
analog_data[-1]['t'] = 2**32-1
# Save to the HDF5 file:
group.create_dataset('ANALOG_OUTS', data=analog_data)
# Make the digital output table:
digital_dtypes = [('t',np.uint), ('card',int), ('bitfield',int)]
# sort by time:
all_digital_instructions.sort(key=lambda instruction: instruction['t'])
digital_data = np.zeros(len(all_digital_instructions)+1, dtype=digital_dtypes)
for i, instruction in enumerate(all_digital_instructions):
digital_data[i]['t'] = round(instruction['t']/self.clock_resolution)
digital_data[i]['card'] = instruction['card']
digital_data[i]['bitfield'] = instruction['bitfield']
# Add the 'end of data' instruction to the end:
digital_data[-1]['t'] = 2**32-1
# Save to the HDF5 file:
group.create_dataset('DIGITAL_OUTS', data=digital_data)
#group.attrs['stop_time'] = self.stop_time/self.clock_resolution
group.attrs['cycle_time'] = self.clock_resolution
def generate_code(self, hdf5_file):
outputs = self.get_all_outputs()
#outputs, outputs_by_clockline = self.get_outputs_by_clockline()
# We call the following to do the error checking it includes,
# but we're not actually interested in the set of change times.
# Each card will handle its own timebase issues.
#ignore = self.collect_change_times(outputs, outputs_by_clockline)
#self.do_checks(outputs)
# This causes the cards to have their generate_code() methods
# called. They collect up the instructions of their outputs,
# and then we will collate them together into one big instruction
# table.
#Device.generate_code(self, hdf5_file)
#self.collect_card_instructions(hdf5_file)
# We don't actually care about these other things that pseudoclock
# classes normally do, but they still do some error checking
# that we want:
#change_times = self.collect_change_times(outputs, outputs_by_clockline)
#for output in outputs:
# output.make_timeseries(change_times)
#all_times, clock = self.expand_change_times(change_times, outputs)