Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import argparse
import os
import json
import numpy as np
import torch
from src.pose_extractor import PoseCroCoExtractor
from tools.ply_file_to_3d_coord_model import convert_unique
from rendering.renderer_xyz import Renderer
from rendering.model import Model3D
from tqdm import tqdm
import cv2
from PIL import Image
from pose_utils import img_utils
from rendering.utils import get_rendering, get_sympose
import random
if __name__=="__main__":
# setting a seed so the model does not behave random
seed = 1 # found by checking the saliency map 33
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
parser = argparse.ArgumentParser(description='Test pose estimation inference on test set')
parser.add_argument('--config_file', default="./zs6d_configs/template_gt_preparation_configs/cfg_template_gt_generation_ycbv_croco.json")
args = parser.parse_args()
with open(os.path.join(args.config_file),'r') as f:
config = json.load(f)
with open(os.path.join(config['path_models_info_json']), 'r') as f:
models_info = json.load(f)
obj_poses = np.load(config['path_template_poses'])
# Creating the output folder for the cropped templates and descriptors
if not os.path.exists(config['path_output_templates_and_descs_folder']):
os.makedirs(config['path_output_templates_and_descs_folder'])
# Creating the models_xyz folder
if not os.path.exists(config['path_output_models_xyz']):
os.makedirs(config['path_output_models_xyz'])
# Preparing the object models in xyz format:
print("Loading and preparing the object meshes:")
norm_factors = {}
for obj_model_name in tqdm(os.listdir(config['path_object_models_folder'])):
if obj_model_name.endswith(".ply"):
obj_id = int(obj_model_name.split("_")[-1].split(".ply")[0])
input_model_path = os.path.join(config['path_object_models_folder'], obj_model_name)
output_model_path = os.path.join(config['path_output_models_xyz'], obj_model_name)
# if not os.path.exists(output_model_path):
x_abs,y_abs,z_abs,x_ct,y_ct,z_ct = convert_unique(input_model_path, output_model_path)
norm_factors[obj_id] = {'x_scale':float(x_abs),
'y_scale':float(y_abs),
'z_scale':float(z_abs),
'x_ct':float(x_ct),
'y_ct':float(y_ct),
'z_ct':float(z_ct)}
with open(os.path.join(config['path_output_models_xyz'],"norm_factor.json"),"w") as f:
json.dump(norm_factors,f)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
extractor = PoseCroCoExtractor(model_type='crocov1', stride=16, device=device)
cam_K = np.array(config['cam_K']).reshape((3,3))
ren = Renderer((config['template_resolution'][0], config['template_resolution'][1]), cam_K)
template_labels_gt = dict()
with torch.no_grad():
for template_name in tqdm(os.listdir(config['path_templates_folder'])):
path_template_folder = os.path.join(config['path_templates_folder'], template_name)
if os.path.isdir(path_template_folder) and template_name != "models" and template_name != "models_proc":
path_to_template_desc = os.path.join(config['path_output_templates_and_descs_folder'],
template_name)
if not os.path.exists(path_to_template_desc):
os.makedirs(path_to_template_desc)
obj_id = template_name.split("_")[-1]
model_info = models_info[str(obj_id)]
obj_model = Model3D()
model_path = os.path.join(config['path_output_models_xyz'], f"obj_{int(obj_id):06d}.ply")
# Some objects are scaled inconsistently within the dataset, these exceptions are handled here:
obj_scale = config['obj_models_scale']
obj_model.load(model_path, scale=obj_scale)
files = os.listdir(path_template_folder)
filtered_files = list(filter(lambda x: not x.startswith('mask_'), files))
filtered_files.sort(key=lambda x: os.path.getmtime(os.path.join(path_template_folder,x)))
tmp_list = []
for i, file in enumerate(filtered_files):
# Preparing mask and bounding box [x,y,w,h]
mask_path = os.path.join(path_template_folder, f"mask_{file}")
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
x, y, w, h = cv2.boundingRect(contours[0])
crop_size = max(w,h)
# Preparing cropped image and desc
img = cv2.imread(os.path.join(path_template_folder, file))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_crop, crop_x, crop_y = img_utils.make_quadratic_crop(img, [x, y, w, h])
img_prep, img_crop, _ = extractor.preprocess(Image.fromarray(img_crop), load_size=224)
desc = extractor.extract_descriptors(img_prep.to(device), layer=5, facet='key', bin=False, include_cls=True)
desc = desc.squeeze(0).squeeze(0).detach().cpu().numpy()
R = obj_poses[i][:3,:3]
t = obj_poses[i].T[-1,:3]
sym_continues = [0,0,0,0,0,0]
keys = model_info.keys()
if('symmetries_continuous' in keys):
sym_continues[:3] = model_info['symmetries_continuous'][0]['axis']
sym_continues[3:] = model_info['symmetries_continuous'][0]['offset']
rot_pose, rotation_lock = get_sympose(R, sym_continues)
img_uv, depth_rend, bbox_template = get_rendering(obj_model, rot_pose, t/1000., ren)
img_uv = img_uv.astype(np.uint8)
img_uv,_,_ = img_utils.make_quadratic_crop(img_uv, [crop_y, crop_x, crop_size, crop_size])
# Storing template information:
tmp_dict = {"img_id": str(i),
"img_name":os.path.join(os.path.join(path_template_folder,file)),
"mask_name":os.path.join(os.path.join(path_template_folder,f"mask_{file}")),
"obj_id": str(obj_id),
"bbox_obj": [x,y,w,h],
"cam_R_m2c": R.tolist(),
"cam_t_m2c": t.tolist(),
"model_path": os.path.join(config['path_object_models_folder'], f"obj_{int(obj_id):06d}.ply"),
"model_info": models_info[str(obj_id)],
"cam_K": cam_K.tolist(),
"img_crop": os.path.join(path_to_template_desc, file),
"img_desc": os.path.join(path_to_template_desc, f"{file.split('.')[0]}.npy"),
"uv_crop": os.path.join(path_to_template_desc, f"{file.split('.')[0]}_uv.npy"),
}
tmp_list.append(tmp_dict)
# Saving all template crops and descriptors:
np.save(tmp_dict['uv_crop'], img_uv)
np.save(tmp_dict['img_desc'], desc)
img_crop.save(tmp_dict['img_crop'])
template_labels_gt[str(obj_id)] = tmp_list
with open(config['output_template_gt_file'], 'w') as f:
json.dump(template_labels_gt, f)