***
Wartungsfenster jeden ersten Mittwoch vormittag im Monat
***
Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
MooAFEM
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ASC
Praetorius
MooAFEM
Commits
ef31ad4c
Commit
ef31ad4c
authored
1 year ago
by
Innerberger, Michael
Browse files
Options
Downloads
Patches
Plain Diff
Clean up examples
parent
68b4d5fb
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
examples/storingLevelOrientedData.m
+52
-66
52 additions, 66 deletions
examples/storingLevelOrientedData.m
examples/timingWithLevelDataCollection.m
+1
-1
1 addition, 1 deletion
examples/timingWithLevelDataCollection.m
with
53 additions
and
67 deletions
examples/storingLevelOrientedData.m
+
52
−
66
View file @
ef31ad4c
function
leveldata
=
storingLevelOrientedData
(
doPlots
)
% Example of an adaptive FEM algorithm with storing and displaying
%%MAINLEVELDATA Example of an adaptive FEM algorithm with storing and
% level-oriented data
%displaying level-oriented dataa
%% proceed optional input
function
leveldata
=
storingLevelOrientedData
(
doPlots
,
doStore
)
if
nargin
<
1
arguments
doPlots
=
true
;
doPlots
(
1
,
1
)
logical
=
true
doStore
(
1
,
1
)
logical
=
false
end
end
%% paramters
%% paramters
...
@@ -15,7 +15,7 @@ function leveldata = storingLevelOrientedData(doPlots)
...
@@ -15,7 +15,7 @@ function leveldata = storingLevelOrientedData(doPlots)
mesh
=
Mesh
.
loadFromGeometry
(
'Lshape'
);
mesh
=
Mesh
.
loadFromGeometry
(
'Lshape'
);
fes
=
FeSpace
(
mesh
,
LowestOrderH1Fe
());
fes
=
FeSpace
(
mesh
,
LowestOrderH1Fe
());
u
=
FeFunction
(
fes
);
u
=
FeFunction
(
fes
);
%% initialize output data structure
%% initialize output data structure
pathToStorage
=
'results'
;
pathToStorage
=
'results'
;
leveldata
=
LevelData
(
pathToStorage
);
leveldata
=
LevelData
(
pathToStorage
);
...
@@ -23,69 +23,68 @@ function leveldata = storingLevelOrientedData(doPlots)
...
@@ -23,69 +23,68 @@ function leveldata = storingLevelOrientedData(doPlots)
leveldata
.
metaData
(
'domain'
)
=
'Lshape'
;
leveldata
.
metaData
(
'domain'
)
=
'Lshape'
;
leveldata
.
metaData
(
'method'
)
=
'S1'
;
leveldata
.
metaData
(
'method'
)
=
'S1'
;
leveldata
.
metaData
(
'identifier'
)
=
'example'
;
leveldata
.
metaData
(
'identifier'
)
=
'example'
;
%% problem data
%% problem data
blf
=
BilinearForm
();
blf
=
BilinearForm
();
lf
=
LinearForm
();
lf
=
LinearForm
();
blf
.
a
=
Constant
(
mesh
,
[
1
;
0
;
0
;
1
]);
blf
.
a
=
Constant
(
mesh
,
1
);
blf
.
b
=
Constant
(
mesh
,
[
0
;
0
]);
blf
.
c
=
Constant
(
mesh
,
0
);
lf
.
f
=
Constant
(
mesh
,
1
);
lf
.
f
=
Constant
(
mesh
,
1
);
lf
.
fvec
=
Constant
(
mesh
,
[
0
;
0
]);
% reference value for energy norm of exact solution
% reference value for energy norm of exact solution
normExactSquared
=
0.2140750232
;
normExactSquared
=
0.2140750232
;
%% adaptive loop
%% adaptive loop
meshSufficientlyFine
=
false
;
meshSufficientlyFine
=
false
;
while
~
meshSufficientlyFine
while
~
meshSufficientlyFine
%% compute data for rhs coefficient and assemble forms
%% compute data for rhs coefficient and assemble forms
A
=
assemble
(
blf
,
fes
);
A
=
assemble
(
blf
,
fes
);
F
=
assemble
(
lf
,
fes
);
F
=
assemble
(
lf
,
fes
);
%% solve FEM system
%% solve FEM system
freeDofs
=
getFreeDofs
(
fes
);
freeDofs
=
getFreeDofs
(
fes
);
tic
;
tic
;
u
.
setFreeData
(
A
(
freeDofs
,
freeDofs
)
\
F
(
freeDofs
));
u
.
setFreeData
(
A
(
freeDofs
,
freeDofs
)
\
F
(
freeDofs
));
runtimeSolve
=
toc
;
runtimeSolve
=
toc
;
%% approximate error
%% approximate error
err
=
sqrt
(
normExactSquared
-
u
.
data
*
A
*
u
.
data
'
);
err
=
sqrt
(
normExactSquared
-
u
.
data
*
A
*
u
.
data
'
);
%% compute refinement indicators
%% compute refinement indicators
tic
;
tic
;
eta2
=
estimate
(
blf
,
lf
,
u
);
eta2
=
estimate
(
blf
,
lf
,
u
);
eta
=
sqrt
(
sum
(
eta2
));
eta
=
sqrt
(
sum
(
eta2
));
runtimeEstimate
=
toc
;
runtimeEstimate
=
toc
;
%% compute efficiency index
%% compute efficiency index
eff
=
err
/
eta
;
eff
=
err
/
eta
;
%% storing error quantities and general data
%% storing error quantities and general data
leveldata
.
append
(
'ndof'
,
uint32
(
length
(
freeDofs
)),
...
leveldata
.
append
(
'ndof'
,
uint32
(
length
(
freeDofs
)),
...
'eta'
,
eta
,
...
'eta'
,
eta
,
...
'err'
,
err
,
...
'err'
,
err
,
...
'coordinates'
,
mesh
.
coordinates
,
...
'coordinates'
,
mesh
.
coordinates
,
...
'elements'
,
mesh
.
elements
);
'elements'
,
mesh
.
elements
);
%% storing results of timing
%% storing results of timing
leveldata
.
setTime
(
leveldata
.
nLevel
,
...
leveldata
.
setTime
(
leveldata
.
nLevel
,
...
'runtimeSolve'
,
runtimeSolve
,
...
'runtimeSolve'
,
runtimeSolve
,
...
'runtimeEstimate'
,
runtimeEstimate
);
'runtimeEstimate'
,
runtimeEstimate
);
%% storing absolute values
%% storing absolute values
leveldata
.
setAbsolute
(
leveldata
.
nLevel
,
'eff'
,
eff
);
leveldata
.
setAbsolute
(
leveldata
.
nLevel
,
'eff'
,
eff
);
%% print information on current level to command line
%% print information on current level to command line
leveldata
.
printLevel
();
leveldata
.
printLevel
();
%% save intermediate results to file
%% save intermediate results to file
% (prevents data loss in case of crashes)
% (prevents data loss in case of crashes)
leveldata
.
saveToFile
();
if
doStore
leveldata
.
saveToFile
();
end
%% stoping criterion
%% stoping criterion
meshSufficientlyFine
=
(
mesh
.
nElements
>
nEmax
);
meshSufficientlyFine
=
(
mesh
.
nElements
>
nEmax
);
%% refine mesh
%% refine mesh
if
~
meshSufficientlyFine
if
~
meshSufficientlyFine
marked
=
markDoerflerBinning
(
eta2
,
theta
);
marked
=
markDoerflerBinning
(
eta2
,
theta
);
...
@@ -95,8 +94,8 @@ function leveldata = storingLevelOrientedData(doPlots)
...
@@ -95,8 +94,8 @@ function leveldata = storingLevelOrientedData(doPlots)
%% post-processing variables
%% post-processing variables
leveldata
.
setTime
(
':'
,
'runtimeTotal'
,
...
leveldata
.
setTime
(
':'
,
'runtimeTotal'
,
...
sum
(
leveldata
.
get
(
':'
,
'runtimeSolve'
,
'runtimeEstimate'
),
2
));
sum
(
leveldata
.
get
(
':'
,
'runtimeSolve'
,
'runtimeEstimate'
),
2
));
%% plot results
%% plot results
if
doPlots
if
doPlots
% plot error quantities (in general, converging to zeros)
% plot error quantities (in general, converging to zeros)
...
@@ -110,54 +109,41 @@ function leveldata = storingLevelOrientedData(doPlots)
...
@@ -110,54 +109,41 @@ function leveldata = storingLevelOrientedData(doPlots)
% plot absolute values in semi-logarithmic plot
% plot absolute values in semi-logarithmic plot
figure
();
figure
();
leveldata
.
plotAbsolute
(
'ndof'
);
leveldata
.
plotAbsolute
(
'ndof'
);
end
% plot of all triangulations
% figure();
%% additional visualization/storage capabilities
% leveldata.plotTriangulation();
if
doStore
% export error plot to file
%% export error plot to file
leveldata
.
plotToFile
(
'ndof'
);
leveldata
.
plotToFile
(
'ndof'
);
%% export refinement video
% save all values to comma-separated table
% (generates video of about 110 MB)
leveldata
.
saveToTable
();
%leveldata.plotTriangulationToFile();
end
%% save all values to comma-separated table
% plot of all triangulations one after another
leveldata
.
saveToTable
();
figure
();
leveldata
.
plotTriangulation
();
% export refinement video (generates video of about 110 MB)
leveldata
.
plotTriangulationToFile
();
end
end
end
%% local function for residual a posteriori error estimation
%% local function for residual a posteriori error estimation
% This function shows how to build a residual error estimator with the provided
% \eta(T)^2 = h_T^2 * || \Delta u + f ||_{L^2(T)}^2 + h_T * || [Du] ||_{L^2(E)}^2
% tools. Not hiding this in its own class has the advantage that estimation is
function
indicators
=
estimate
(
~
,
~
,
u
)
% very flexible with respect to the involved terms.
% \eta(T)^2 = h_T^2 * || -div(a*Du) + b*Du + c*u - f + div(fvec) ||_{L^2(T)}^2
% + h_T * || [ a*Du - fvec ] ||_{L^2(E)}^2
function
indicators
=
estimate
(
blf
,
lf
,
u
)
fes
=
u
.
fes
;
fes
=
u
.
fes
;
mesh
=
fes
.
mesh
;
mesh
=
fes
.
mesh
;
%% compute volume residual element-wise
%% compute volume residual element-wise
% Here, one can optimize the estimator for the given situation. In the case
f
=
CompositeFunction
(
@
(
Du
)
vectorProduct
(
Du
,
Du
),
Gradient
(
u
));
% p=1 with constant diffusion, the diffusion term vanishes in the residual.
qrTri
=
QuadratureRule
.
ofOrder
(
1
);
% Also div(fvec) vanishes if fvec is element-wise constant.
f
=
CompositeFunction
(
...
@
(
b
,
c
,
f
,
u
,
Du
)
(
vectorProduct
(
b
,
Du
)
+
c
.*
u
-
f
)
.^
2
,
...
blf
.
b
,
blf
.
c
,
lf
.
f
,
u
,
Gradient
(
u
));
qrTri
=
QuadratureRule
.
ofOrder
(
4
);
volumeRes
=
integrateElement
(
f
,
qrTri
);
volumeRes
=
integrateElement
(
f
,
qrTri
);
%% compute edge residual edge-wise
%% compute edge residual edge-wise
% Here, none of the terms vanish, so they must be computed. This can be done
% with a lower order than the element-residuals.
f
=
CompositeFunction
(
...
@
(
a
,
fvec
,
Du
)
vectorProduct
(
a
,
Du
,
[
2
,
2
],
[
2
,
1
])
-
fvec
,
...
blf
.
a
,
lf
.
fvec
,
Gradient
(
u
));
qrEdge
=
QuadratureRule
.
ofOrder
(
1
,
'1D'
);
qrEdge
=
QuadratureRule
.
ofOrder
(
1
,
'1D'
);
edgeRes
=
integrateNormalJump
(
f
,
qrEdge
,
@
(
j
)
j
.^
2
,
{},
':'
);
edgeRes
=
integrateNormalJump
(
Gradient
(
u
)
,
qrEdge
,
@
(
j
)
j
.^
2
,
{},
':'
);
dirichlet
=
getCombinedBndEdges
(
mesh
,
fes
.
bnd
.
dirichlet
);
dirichlet
=
getCombinedBndEdges
(
mesh
,
fes
.
bnd
.
dirichlet
);
edgeRes
(
dirichlet
)
=
0
;
edgeRes
(
dirichlet
)
=
0
;
...
...
This diff is collapsed.
Click to expand it.
examples/timingWithLevelDataCollection.m
+
1
−
1
View file @
ef31ad4c
...
@@ -8,7 +8,7 @@ nRuns = 10;
...
@@ -8,7 +8,7 @@ nRuns = 10;
%% run time measurements
%% run time measurements
leveldatacollection
=
...
leveldatacollection
=
...
TimeIt
(
'debugTiming'
,
nRuns
,
'storingLevelOrientedData'
,
false
);
TimeIt
(
'debugTiming'
,
nRuns
,
'storingLevelOrientedData'
,
false
,
false
);
%% print statistical analysis of timing results
%% print statistical analysis of timing results
leveldatacollection
.
printStatistics
();
leveldatacollection
.
printStatistics
();
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment