I
CIENT!

O T

Foundations of LLM Mastery:
Fine-tuning with multi GPUs

25 February 2025
ONLINE

EURO

AUSTRIA



Large Language Model
Parallelizaion

Or: how to chop up a Llama

Speaker: Simeon Harrison
Trainer at EuroCC Austria

AAAAAAA



: At
Problems Arise o b1 for e
GPU. I need to lose
some weight(s).
Data and Model too large O
Oo"“ i«

You might quickly encounter a situation in which you data
and model no longer fit in your GPU’s memory.

Memory footprint estimation for Mistral /B (half precision):
/ x 2 =14 GB for the weights
/7 x 2 =14 GB for the gradients
/ x 2 x 2 =728 GB for the optimizer state(s)
Total of 56GB for the model only!

/ comes from /B parameters
2 stands for 2 Bytes per parameter



Data Parallelism

Llama Model

AAAAAAA



Model Parallelism

Llama Model

AAAAAAA



EURO

AUSTRIA

Model Parallelism

Pipeline parallel tensor parallel

Model split up along layers

Each GPU gets one or several layers

Results are synced at the end of every step
Important: Largest layer needs to fit in GPU's memory

Tensor parallel o
pipeline parallel

* FEvery tensor is split up into several chunks

* One GPU gets one shard of the whole tensor
* Each shard gets processed seperately

* Results are synced at the end of every step




EURO

D D P AUSTRIA

D A
DistributedDataParallel
replicates the model across GPUs and processes batches
independently on each GPU.

DDP synchronizes gradients efficiently across GPUs,
making it more scalable and performant, especially when GPUSs
dealing with large models or clusters of machines.

ldeal, if model fits in GPUs memory with ease. i '



Hugging Face Accelerate

Accelerate is a library that enables the same PyTorch
code to be run across any distributed configuration by
adding just a few lines of code.

It simplifies the use of advanced parallelism
techniques such as Fully Sharded Data Parallel
(FSDP) and ZeRO (Zero Redundancy Optimizer),
allowing users to scale large models across multiple
GPUs and nodes with minimal changes to their code.

1

+

from accelerate import Accelerator

accelerator = Accelerator()

EURO

AUSTRIA

+ model, optimizer, training_dataloader, scheduler = accelerator.prepare(

+

model, optimizer, training_dataloader, scheduler

+)

for batch in training dataloader:
optimizer.zero_grad()
inputs, targets = batch
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model (inputs)
loss = loss_function(outputs,
accelerator.backward (loss)
optimizer.step()

scheduler.step()

targets)



EURO

ZeRO with DeepSpeed

Zero Redundancy Optimizer | tensor parallel

Is @ memory optimization technique designed to scale
large models efficiently across multiple GPUs. The core
idea behind ZeRO is to minimize memory redundancy
when training large-scale models, making it possible to
train models that wouldn't otherwise fit in memory.

« ZeRO Stage 1 - Optimizer State Sharding @ i
 /eRO Stage 2 - Gradient Sharding
 /eRO Stage 3 — Parameter

pipeline parallel

ZeRO is typically used with DeepSpeed



ZeRO with DeepSpeed

Memory usage without ZeRO

1] L]

Data 5 Gpu’

|l 1 lllllll
Data““ m"'

Source: https://www.microsoft.com/en-us/research/blog/

Datan-‘ .

With ZeRO

GPU

EURO

AUSTRIA


https://www.microsoft.com/en-us/research/blog/

FSDP At

Fully Sharded Data Parallel

To accelerate training huge models on larger batch sizes, we can use a fully sharded data
parallel model. This type of data parallel paradigm enables fitting more data and larger
models by sharding the optimizer states, gradients and parameters.

Mapping between FSDP and ZeRO

 FULL_SHARD maps to the DeepSpeed ZeRO Stage-3.

« SHARD_GRAD_OP maps to the DeepSpeed ZeRO Stage-2.
* NO_SHARD maps to ZeRO Stage-0.



THANK YOU

&

EURO

AUSTRIA

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant
agreement No 101101903. The JU receives support from the Digital Europe Programme and Germany, Bulgaria, Austria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal,

Romania, Slovenia, Spain, Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Turkiye, Republic of North
Macedonia, Iceland, Montenegro, Serbia



