diff --git a/integrators/_details/interfaces/tpsPreconditioner.py b/integrators/_details/interfaces/tpsPreconditioner.py index bb252a7d82f1867be552cf36a6c11e7f0fc4d012..bb12755cb5ebe88798d3d7ab9d119dbc9b8c5f5d 100644 --- a/integrators/_details/interfaces/tpsPreconditioner.py +++ b/integrators/_details/interfaces/tpsPreconditioner.py @@ -126,24 +126,19 @@ class TPSPreconditioner(_preconditionerInterface._PreconditionerInterface): if opt == "ml": ml = pyamg.ruge_stuben_solver(A) pre = ml.aspreconditioner() - - self._prePractical = lambda y: np.concatenate(( \ - (pre * y[:y.size//3], pre * y[y.size//3:2*y.size//3], pre * y[2*y.size//3:]))) + pre1D = lambda z: pre * z elif opt == "splu": cgs = pyamg.coarse_grid_solver("splu") - self._prePractical = lambda y: np.concatenate(( \ - (cgs(A, y[:y.size//3]), \ - cgs(A, y[y.size//3:2*y.size//3]), \ - cgs(A, y[2*y.size//3:])))) + pre1D = lambda z: cgs(A, z) elif opt == "cg": metaPre = 1.0 / A.diagonal() metaP = lambda x: metaPre*x P = scipy.sparse.linalg.LinearOperator(A.shape, matvec=metaP) - self._prePractical = lambda y: np.concatenate(( \ - scipy.sparse.linalg.cg(A, y[:y.size//3], tol=self._solvetol/10, M=P)[0], \ - scipy.sparse.linalg.cg(A, y[y.size//3:2*y.size//3], tol=self._solvetol/10, M=P)[0], \ - scipy.sparse.linalg.cg(A, y[2*y.size//3:], tol=self._solvetol/10, M=P)[0])) + pre1D = lambda z: scipy.sparse.linalg.cg(A, z, tol=self._solvetol/10, M=P)[0] + self._prePractical = lambda y: np.concatenate(( + pre1D(y[:y.size//3]), pre1D(y[y.size//3:2*y.size//3]), pre1D(y[2*y.size//3:]))) + practical2D = lambda x: \ self._Q.dot(self._prePractical(self._Q.transpose().dot(x))) @@ -174,24 +169,21 @@ class TPSPreconditioner(_preconditionerInterface._PreconditionerInterface): if opt == "ml": ml = pyamg.ruge_stuben_solver(A) pre = ml.aspreconditioner() - - Pre = lambda x: np.vstack( \ - (pre * x[0::2], pre * x[1::2])).reshape((-1,),order='F') + pre1D = lambda z: pre * z elif opt == "splu": cgs = pyamg.coarse_grid_solver("splu") - Pre = lambda x: np.vstack( \ - (cgs(A, x[0::2]), cgs(A, x[1::2]))).reshape((-1,),order='F') + pre1D = lambda z: cgs(A, z) elif opt == "cg": metaPre = 1.0 / A.diagonal() MetaPre = lambda x: metaPre * x P = scipy.sparse.linalg.LinearOperator(A.shape, matvec=MetaPre) - Pre = lambda x: np.vstack(( - scipy.sparse.linalg.cg(A, x[0::2], tol=self._solvetol/10, M=P)[0], \ - scipy.sparse.linalg.cg(A, x[1::2], tol=self._solvetol/10, M=P)[0])) \ - .reshape((-1,),order='F') + pre1D = lambda z: scipy.sparse.linalg.cg(A, z, tol=self._solvetol/10, M=P)[0] + stationary2D = lambda x: \ + np.vstack((pre1D(x[0::2]), pre1D(x[1::2]))).reshape((-1,),order='F') + self._preconditioner = scipy.sparse.linalg.LinearOperator( \ - (A.shape[0]*2, A.shape[0]*2), matvec=Pre) + (A.shape[0]*2, A.shape[0]*2), matvec=stationary2D) #------------------------------------------------------------------------------#