
Forsyte and Friends Rust Tutorial

Florian Sextl, Mark Chimes, Adrian Rebola
2025-03-25

Should you use Rust/would you want to use Rust?

Simple Answer
That depends on a lot of things.

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 2 / 8

Should you use Rust/would you want to use Rust?

Simple Answer
That depends on a lot of things.

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 2 / 8

Performance

• Studies often compare to C
• Overall slower with runtime checks, similar optimized
• optimizations due to safety, compile-time checks, ZSTs

Performance

• Studies often compare to C

• Overall slower with runtime checks, similar optimized
• optimizations due to safety, compile-time checks, ZSTs

Performance

• Studies often compare to C
• Overall slower with runtime checks, similar optimized

• optimizations due to safety, compile-time checks, ZSTs

Performance

• Studies often compare to C
• Overall slower with runtime checks, similar optimized
• optimizations due to safety, compile-time checks, ZSTs

Performance
Example: Rust for Linux NVMe driver

https://rust-for-linux.com/nvme-driver

Performance

Further examples:

• sudo-rs
• fish
• zlib-rs
• skrifa (new font engine in Chrome)
• at AWS (e.g. Firecracker)
• Linux/Windows/Android/...
• and many more

https://github.com/trifectatechfoundation/sudo-rs
https://fishshell.com/blog/rustport/
https://github.com/trifectatechfoundation/zlib-rs
https://developer.chrome.com/blog/memory-safety-fonts
https://aws.amazon.com/blogs/opensource/why-aws-loves-rust-and-how-wed-like-to-help/
https://github.com/firecracker-microvm/firecracker
https://rust-for-linux.com/
https://webcf.waybackmachine.org/web/20230514034158/https://twitter.com/markrussinovich/status/1656416376125538304?lang=en-GB
https://source.android.com/docs/setup/build/rust/building-rust-modules/overview
https://rustutils.com/
https://jnsgr.uk/2025/03/carefully-but-purposefully-oxidising-ubuntu/

Safety Guarantees

Memory Safety
Safe from: use-after-free, null pointer dereference, out-of-bounds access,
uninitialized memory, iterator invalidation, . . . due to type/ownership system

Thread Safety
Safe from data races due to type/ownership system and std thread APIs

Basic Rule
Safe Rust can never directly cause Undefined Behavior!

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 4 / 8

Safety Guarantees

Memory Safety
Safe from: use-after-free, null pointer dereference, out-of-bounds access,
uninitialized memory, iterator invalidation, . . . due to type/ownership system

Thread Safety
Safe from data races due to type/ownership system and std thread APIs

Basic Rule
Safe Rust can never directly cause Undefined Behavior!

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 4 / 8

Safety Guarantees

Memory Safety
Safe from: use-after-free, null pointer dereference, out-of-bounds access,
uninitialized memory, iterator invalidation, . . . due to type/ownership system

Thread Safety
Safe from data races due to type/ownership system and std thread APIs

Basic Rule
Safe Rust can never directly cause Undefined Behavior!

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 4 / 8

Safety Guarantees

Memory Safety
Safe from: use-after-free, null pointer dereference, out-of-bounds access,
uninitialized memory, iterator invalidation, . . . due to type/ownership system

Thread Safety
Safe from data races due to type/ownership system and std thread APIs

Basic Rule
Safe Rust can never directly cause Undefined Behavior!

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 4 / 8

Safety Encapsulation via unsafe

unsafe Block
• allows unsafe “super powers” in a limited scope
• enclosed, local safety reasoning

unsafe Functions
• denotes uncheckable invariants/requirements
• also for FFI functions

Library Soundness
A call to a safe API must never cause Undefined Behavior!

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 5 / 8

Safety Encapsulation via unsafe

unsafe Block
• allows unsafe “super powers” in a limited scope
• enclosed, local safety reasoning

let slice = unsafe {

// SAFETY: raw_ptr is guaranteed to be non -null

// and will point to n elements in memory.

from_raw_parts(raw_ptr , n)

};

unsafe Functions
• denotes uncheckable invariants/requirements
• also for FFI functions

Library Soundness
A call to a safe API must never cause Undefined Behavior!

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 5 / 8

Safety Encapsulation via unsafe

unsafe Block
• allows unsafe “super powers” in a limited scope
• enclosed, local safety reasoning

unsafe Functions
• denotes uncheckable invariants/requirements
• also for FFI functions

Library Soundness
A call to a safe API must never cause Undefined Behavior!

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 5 / 8

Safety Encapsulation via unsafe

unsafe Block
• allows unsafe “super powers” in a limited scope
• enclosed, local safety reasoning

unsafe Functions
• denotes uncheckable invariants/requirements
• also for FFI functions

Library Soundness
A call to a safe API must never cause Undefined Behavior!

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 5 / 8

Type System

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 6 / 8

Type System

High level, compile-time abstractions

/** Required state: SAT

* State after: SAT */

IPASIR_API int32_t ipasir_val (void * solver , int32_t lit);

pub fn value(self: &Solver <SATState >, literal: Literal) ->

Result <Assignment , Error >;

pub fn checked_sat(self: Solver <SolvedState >) ->

Result <Solver <SATState >, Error >;

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 6 / 8

Type System

Type-based error handling

pub fn solve_formula <F, C, L>(formula: F) ->

Result <Option <HashMap <L, Assignment >>, Error >

...

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 6 / 8

Type System

Advanced type level magic

pub fn solve_formula <F, C, L>(formula: F) ->

Result <Option <HashMap <L, Assignment >>, Error >

where

F: IntoIterator <Item = C>,

C: IntoIterator <Item = L>,

NonZeroI32: TryFrom <L>,

Error: From <<NonZeroI32 as TryFrom <L>>::Error >,

L: Abs <Result = L> + Eq + Hash ,

{ ...

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 6 / 8

Further Arguments for Rust

• Great ecosystem (tools, documentation, community)
• Easy verification (safety guarantees + type system)
• Strong academic connections (ownership type system, language

semantics)
• Multi-leveled native concurrency support (process vs. thread vs. async)

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 7 / 8

Further Arguments for Rust

• Great ecosystem (tools, documentation, community)

• Easy verification (safety guarantees + type system)
• Strong academic connections (ownership type system, language

semantics)
• Multi-leveled native concurrency support (process vs. thread vs. async)

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 7 / 8

Further Arguments for Rust

• Great ecosystem (tools, documentation, community)
• Easy verification (safety guarantees + type system)

• Strong academic connections (ownership type system, language
semantics)

• Multi-leveled native concurrency support (process vs. thread vs. async)

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 7 / 8

Further Arguments for Rust

• Great ecosystem (tools, documentation, community)
• Easy verification (safety guarantees + type system)
• Strong academic connections (ownership type system, language

semantics)

• Multi-leveled native concurrency support (process vs. thread vs. async)

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 7 / 8

Further Arguments for Rust

• Great ecosystem (tools, documentation, community)
• Easy verification (safety guarantees + type system)
• Strong academic connections (ownership type system, language

semantics)
• Multi-leveled native concurrency support (process vs. thread vs. async)

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 7 / 8

Why you might not want to use Rust

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 8 / 8

Why you might not want to use Rust

Ownership type system
• self-referential data structures
• complex mental model

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 8 / 8

Why you might not want to use Rust

Cumbersome rapid prototyping
• Rust enforces good design from start
• Workarounds are often verbose

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 8 / 8

Why you might not want to use Rust

Steep learning curve
• Borrowing and lifetimes
• unsafe
• Language quirks: e.g. orphan rule

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 8 / 8

Why you might not want to use Rust

Instability
• Language and compiler development
• No formal semantics (but active work)
• No specification (apart from Ferrocene)

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 8 / 8

