gy 5 forisyte™

WIEN

Forsyte and Friends Rust Tutorial

Florian Sextl, Mark Chimes, Adrian Rebola
2025-03-25

Should you use Rust/would you want to use Rust?

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola

2/8

Should you use Rust/would you want to use Rust?

Simple Answer
That depends on a lot of things.

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola

2/8

Performance

Performance

e Studies often compare to C

Performance

e Studies often compare to C
¢ Overall slower with runtime checks, similar optimized

Performance

e Studies often compare to C
¢ Overall slower with runtime checks, similar optimized
e optimizations due to safety, compile-time checks, ZSTs

Performance
Example: Rust for Linux NVMe driver

Random read throughput (Bare Metal, 1 core)

10/s

104 4

103 4

Configuration (lang, QD)
C1

Rust, 1

C8

Rust, 8

C, 32

Rust, 32

C, 128

Rust, 128

NORROCND

https://rust-for-linux.com/nvme-driver

Performance

Further examples:

sudo-rs

fish

zlib-rs

skrifa (new font engine in Chrome)
at AWS (e.g. Firecracker)
Linux/Windows/Android/...

and many more

https://github.com/trifectatechfoundation/sudo-rs
https://fishshell.com/blog/rustport/
https://github.com/trifectatechfoundation/zlib-rs
https://developer.chrome.com/blog/memory-safety-fonts
https://aws.amazon.com/blogs/opensource/why-aws-loves-rust-and-how-wed-like-to-help/
https://github.com/firecracker-microvm/firecracker
https://rust-for-linux.com/
https://webcf.waybackmachine.org/web/20230514034158/https://twitter.com/markrussinovich/status/1656416376125538304?lang=en-GB
https://source.android.com/docs/setup/build/rust/building-rust-modules/overview
https://rustutils.com/
https://jnsgr.uk/2025/03/carefully-but-purposefully-oxidising-ubuntu/

Safety Guarantees

2025-03-25

Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola

4/8

Safety Guarantees

Memory Safety

Safe from: use-after-free, null pointer dereference, out-of-bounds access,
uninitialized memory, iterator invalidation, ... due to type/ownership system

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola

4/8

Safety Guarantees

Memory Safety

Safe from: use-after-free, null pointer dereference, out-of-bounds access,
uninitialized memory, iterator invalidation, ... due to type/ownership system

Thread Safety
Safe from data races due to type/ownership system and std thread APls

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 4/8

Safety Guarantees

Memory Safety

Safe from: use-after-free, null pointer dereference, out-of-bounds access,
uninitialized memory, iterator invalidation, ... due to type/ownership system

Thread Safety
Safe from data races due to type/ownership system and std thread APls

Basic Rule
Safe Rust can never directly cause Undefined Behavior!

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 4/8

Safety Encapsulation via unsafe

2025-03-25

Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola

5/8

Safety Encapsulation via unsafe

unsafe Block
¢ allows unsafe “super powers” in a limited scope
¢ enclosed, local safety reasoning

let slice = unsafe {
// SAFETY: raw_ptr is guaranteed to be non-null
// and will point to n elements in memory.
from_raw_parts (raw_ptr, n)

};

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 5/8

Safety Encapsulation via unsafe

unsafe Block

e allows unsafe “super powers” in a limited scope
¢ enclosed, local safety reasoning

unsafe Functions

¢ denotes uncheckable invariants/requirements
e also for FFI functions

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 5/8

Safety Encapsulation via unsafe

unsafe Block
e allows unsafe “super powers” in a limited scope
¢ enclosed, local safety reasoning

unsafe Functions
¢ denotes uncheckable invariants/requirements
¢ also for FFI functions

Library Soundness
A call to a safe APl must never cause Undefined Behavior!

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 5/8

Type System

2025-03-25

Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola

6/8

Type System

High level, compile-time abstractions

/** Required state: SAT
* State after: SAT */
IPASIR_API int32_t ipasir_val (void * solver, int32_t 1lit);

pub fn value(self: &Solver<SATState>, literal: Literal) ->
Result <Assignment , Error>;
pub fn checked_sat(self: Solver<SolvedState>) ->
Result <Solver <SATState>, Error>;

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 6/8

)
Type System

Type-based error handling

pub fn solve_formula<F, C, L>(formula: F) ->
Result <Option<HashMap<L, Assignment>>, Error>

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 6/8

Type System

Advanced type level magic

pub fn solve_formula<F, C, L>(formula: F) ->

Result <Option<HashMap<L, Assignment>>, Error>
where

F: Intolterator<Item = C>,

C: Intolterator<Item = L>,

NonZeroI32: TryFrom<L>,

Error: From<<NonZeroI32 as TryFrom<L>>::Error>,

L: Abs<Result = L> + Eq + Hash,

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola

6/8

Further Arguments for Rust

2025-03-25

Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola

7/8

Further Arguments for Rust

e Great ecosystem (tools, documentation, community)

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola

7/8

Further Arguments for Rust

e Great ecosystem (tools, documentation, community)
e Easy verification (safety guarantees + type system)

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola

7/8

Further Arguments for Rust

e Great ecosystem (tools, documentation, community)
e Easy verification (safety guarantees + type system)

e Strong academic connections (ownership type system, language
semantics)

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola

7/8

Further Arguments for Rust

Great ecosystem (tools, documentation, community)
Easy verification (safety guarantees + type system)

Strong academic connections (ownership type system, language
semantics)

Multi-leveled native concurrency support (process vs. thread vs. async)

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 7/8

Why you might not want to use Rust

2025-03-25

Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola

8/8

Why you might not want to use Rust

Ownership type system

e self-referential data structures
e complex mental model

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 8/8

Why you might not want to use Rust

Cumbersome rapid prototyping

¢ Rust enforces good design from start
e Workarounds are often verbose

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 8/8

Why you might not want to use Rust

Steep learning curve

¢ Borrowing and lifetimes
¢ unsafe
e Language quirks: e.g. orphan rule

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 8/8

Why you might not want to use Rust

Instability

¢ Language and compiler development
e No formal semantics (but active work)
¢ No specification (apart from Ferrocene)

2025-03-25 Rust tutorial, Florian Sextl, Mark Chimes, Adrian Rebola 8/8

